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I.	CONVERGENCE	STUDY	IN	∆s:	We	checked	convergence	in	the	time-step	Δs	of	our	Monte	
Carlo	Lagrangian	method,	where	this	step-size	appears	in	the	Euler-Maruyama	scheme	(3.1)	for	
the	stochastic	particle	trajectories	and	also	in	the	corresponding	Euler	scheme		(3.4)	for	the	
deformation	gradient	tensor.	All	of	the	results	presented	in	the	main	text	over	the	time-interval	
-150<	δs+<0	used	time-step	Δs=10-3	with	number	of	particles	N=107.	We	tested	for	convergence	
by	comparing	results	for	the	time-step	Δs=10-3	with	those	for	half	smaller	time-step	Δs=5×10-4.	
In	order	to	identify	the	effects	of		Δs	alone	on	convergence,	we	compared	the	results	for	the	
two	step	sizes	using	the	same	number	of	particles	N=5×106	over	shorter	interval	-100<	δs+<0.		
As	the	simplest	test	for	convergence,	we	compared	the	components	i=x,y,z,ǁ,⊥ of	the	expected	
values	of	the	stochastic	Cauchy	invariant,	corresponding	to	the	results	in	Fig.2a	of	the	main	text	
for	the	ejection	and	in	Fig.4a		for	the	sweep.	The	set	of	plots	are:		
	
par-converge-eject.tif:	Plot	of	expected	value	of	ω~

sǁ(x,t)	vs.	δs+	for	two	Δs, in	the	ejection 
	
perp-converge-eject.tif:	Plot	of	the	norm	of	the	expected	value	of	ω~

s⊥(x,t)	vs.	δs+	for	two	Δs,         
in	the	ejection	
	
x-converge-eject.tif:		Plot	of	expected	value	of	ω~

sx(x,t)	vs.	δs+	for	two	Δs, in	the	ejection	
	
y-converge-eject.tif:		Plot	of	expected	value	of	ω~

sy(x,t)	vs.	δs+	for	two	Δs, in	the	ejection	
	
z-converge-eject.tif:	Plot	of	expected	value	of	ω~

sz(x,t)	vs.	δs+	for	two	Δs, in	the	ejection	
	
par-converge-sweep.tif:	Plot	of	expected	value	of	ω~

sǁ(x,t)	vs.	δs+	for	two	Δs, in	the	sweep 
	
perp-converge-sweep.tif:	Plot	of	the	norm	of	the	expected	value	of	ω~

s⊥(x,t)	vs.	δs+	for	two	Δs,         
in	the	sweep		
	
x-converge-sweep.tif:	Plot	of	expected	value	of	ω~

sx(x,t)	vs.	δs+	for	two	Δs, in	the	sweep	
	
y-converge-sweep.tif:	Plot	of	expected	value	of	ω~

sy(x,t)	vs.	δs+	for	two	Δs, in	the	sweep	
	
z-converge-sweep.tif:		Plot	of	expected	value	of	ω~

sz(x,t)	vs.	δs+	for	two	Δs, in	the	sweep	
	
	



	
	
II.	NAÏVE	CAUCHY	INVARIANTS:		The	standard	Cauchy	invariants	ωs(x,t)	that	are	conserved	for	
smooth	solutions	of	the	ideal	incompressible	Euler	equations	are	not,	of	course,	a	priori	
expected	to	be	conserved	for	viscous	Navier-Stokes	solutions.	We	have	computed	these	naïve	
Cauchy	invariants,	with	the	stochastic	noise	set	to	zero	in	the	equations	for	particle	trajectories,	
as	a	simple	control	experiment	to	demonstrate	that	the	stochasticity	is	necessary	to	obtain	
conservation	for	viscous	flows.		The	naïve	invariants	were	calculated	using	a	4th-order	Runge-
Kutta	method	to	solve	the	ODE's	for	Lagrangian	particle	trajectories	As

t(x).	With	∆s<0,	the	
following	well-known	RK4	method	yields	A=As

t(x)	for	s=sn=t+n(∆s), n=0,1,2,…:			
 
k1=u(An,sn),  k2=u(An+∆s k1/2,sn+∆s/2),   k3=u(An+∆s k2/2,sn+∆s/2),   k4=u(An+∆s k3,sn+∆s) 
An+1 = An+(k1+2k2+2k3+k4) ∆s/6 
 
with	velocity	u	retrieved	as	needed	from	the	channel-flow	database.	To	calculate	the	naïve	
Cauchy	invariant	we	use	the	standard	formula	ωs(x,t) =G⊤-1 ω(As

t(x),s),	which	needs	also	the	
gradient	matrix	G = ∇xAs

t(x).	The	latter	can	be	approximated	at	the	times	s=sn=t+n(∆s), 
n=0,1,2,…	by	taking	the	gradient	with	respect	to	x	of	the	Runge-Kutta	solution	A=As

t(x).	
Applying	the	chain	rule	yields	the	corresponding	integration	formula:			
	
Gn+1=Gn+(K1+2K2+2K3+K4) ∆s/6, 
	
with	the	matrix	products	
	
K1=GnJ1,    K2=(Gn+K1∆s/2)J2,    K3=(Gn+K2∆s/2)J3,    K4=(Gn+K3∆s)J4, 
	
and	with		
	
J1=J(An,sn),   J2=J(An+∆s k1/2,sn+∆s/2),   J3=J(An+∆s k2/2,sn+∆s/2),   J4=J(An+∆s k3,sn+∆s), 
	
where	J= ∇au(a,s)	is	retrieved	as	needed	from	the	channel-flow	database.	We	have	verified	
that	this	RK4	algorithm	yields	conserved	values	of	the	Cauchy	invariants	when	applied	to	
nontrivial	exact	solutions	of	the	incompressible	Euler	equations,	e.g.	ABC	flows.		We	then	
applied	this	same	algorithm	to	the	channel-flow	database	for	the	space-time	points	(x,t)	in	
Table	2	of	the	main	text,	for	the	ejection	and	the	sweep.	Using	this	4th-order	algorithm	both	
with	∆s=10-2	and	with	∆s=10-3	over	the	range	-150<	δs+<0,	we	obtained	identical	results	to	
single-precision	accuracy,	verifying	convergence.		We	then	plotted	over	this	range	of	δs+			
the	three	Cartesian	components	i=x,y,z	of	the	naive	Cauchy	invariant	ωs(x,t),	for	both	the	
ejection	and	the	sweep.	The	set	of	figures	are:	   	
	
naivecauchy-eject.tif:	log-linear	plots	of	|ωsi(x,t)|, i=x,y,z		vs.	δs+,	for	the	ejection		
	
naivecauchy-sweep.tif:	log-linear	plots	of	|ωsi(x,t)|, i=x,y,z		vs.	δs+,	for	the	sweep	
	



	
	
III.	TEST	OF	DIVERGENCE-FREE	VELOCITY-GRADIENT:		The	velocity-gradient	matrices	for	the	
channel-flow	database	returned	by	getVelocityGradient	are	not	exactly	traceless,	as	required	by	
incompressibility	of	the	flow.	Although	the	original	channel-flow	simulation	had	spectral	
accuracy	in	streamwise	and	spanwise	directions	and	7th-order	accuracy	in	the	wall-normal	
direction,	only	the	velocity	fields	from	the	original	simulation	were	stored	in	the	database	and	
not	the	velocity-gradients.	The	matrices	returned	by	getVelocityGradient	are	calculated	at	
simulation	grid	points	by	Lagrange-interpolation	differentiation	formulas	from	the	archived	
velocity	data		and,	between	grid	points,	are	further	approximated	by	Lagrange	interpolation.		
The	deviation	of	the	velocity-gradient	matrices	that	are	returned	by	getVelocityGradient	from	
being	traceless	is	thus	a	reasonable	measure	of	their	deviation	from	true	velocity-gradients	of				
a	Navier-Stokes	solution,	both	because	of	finite-resolution	effects	in	the	original	simulation	and	
because	of	the	additional	Lagrange	interpolations	performed	in	the	database.	We	have	
therefore	quantified	this	deviation	from	the	divergence-free	condition	by	calculating	the	
dimensionless	ratios	
	
																																													⟨|∇⋅u|⟩	/⟨‖∇u‖⟩,			⟨|∇⋅u|/‖∇u‖⟩,			
	
where	⟨⋅⟩	represents	an	average	in	streamwise	position	x	over	the	full	range	from	0	to	8π	and	
where	‖∇u‖	represents	the	Frobenius	matrix	norm.	We	have	calculated	these	ratios	at	the	
final	time	in	the	database,	for	space-points	at	the	spanwise	midpoint	z=3π/2	and	at	various							
y-positions	in	the	wall-normal	direction.	The	resulting	figure	is:		
	
	
DivFreeTest.tif	:		Plot	of	the	ratios	⟨|∇⋅u|⟩	/⟨‖∇u‖⟩,			⟨|∇⋅u|/‖∇u‖⟩	vs.	y+	distances	from	the	
upper	wall	of	the	channel		
	


