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In this supplementary material, we provide details of the numerical algorithm and the

simulation results shown in figure 10. Also, the material includes the animated figures

showing evolution of the flow parameters with time.

The thermal convection is simulated using the following governing equations:

ρj = ρ0(1 + η(pj − pref )− β(T j − Tref )), ej = cT j, j = f,m, (S.1)

uj = −K
j

µ
(∇pj − ρjg), (S.2)

∂t
(
φρj

)
+∇ ·

(
ρjuj

)
= −bjρfmqfm, qfm = σ1

Km

µ
(pf − pm), (S.3)

∂t(ρe)
j +∇ · (ρjhjuj)

= ρjg · uj + λj∇2T j − bjqfmρfmhfm − bjσ2λm(T f − Tm), (S.4)

where all notations are consistent with the article; e and h = e+P/ρ are the specific internal

energy and enthalpy of the fluid; η is the fluid compressibility; µ = const is the dynamic

viscosity; ρ0, pref , and Tref are constants; ρfm (and hfm) are the upwind values of ρ (and

h), i.e., if pf ≥ pm then ρfm = ρf (and hfm = hf ), and if pf < pm then ρfm = ρm (and

hfm = hm); and

(ρe)f = γ
(
φρfef + (1− φ)ρrcrT

f
)

= (ρc)fT f ,

(ρe)m = (1− γ) (φρmem + (1− φ)ρrcrT
m) = (ρc)mTm.

Equations (S.1) are the fluid equations of state, equation (S.2) is Darcy’s law, and equa-

tions (S.3) and (S.4) are the mass and energy balance equations for each medium, respec-

tively. In the Oberbeck-Boussinesq approximation, (S.1)–(S.4) reduce to equations (2.1)–

(2.4) of the article.

The 2-D simulations are conducted using the MUFITS reservoir simulator (Afanasyev,

2017) in dimensional variables, and afterwards, their results are converted to the dimension-

less variables. The domain in the {x, z} plane is of height H and length 5H. According

to (2.9), the upper (z = H) and lower (z = 0) boundaries of the layer are impermeable

and isothermal. The lateral boundaries x = 0 and x = 5H are impermeable and adiabatic.

According to (2.8), at t = 0, the temperature has linear distribution between T = T− = Tref

at z = H and T = T+ at z = 0. At t = 0, the pressure has close-to-hydrostatic distribution
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such that p = pref at z = H. The layer thickness is H = 30 m. The following dimen-

sional parameters used resemble the thermophysical properties of water at pref = 20 bar

and Tref = 20◦C: ρ0 = 1000 kg/m3, η = 5 · 10−5 1/bar, β = 3 · 10−4 1/K, c = 4.2 kJ/kg·K,

µ = 1 cP. The compressibility η is so small that in the simulated flows the fluid density

changes due to variations of T are much larger than those due to variations of p. The

temperatures of T− = 20◦C and T+ = 32◦C are maintained at z = H and z = 0, respec-

tively. Other parameters are chosen to fit particular dimensionless quantities Ra, κ, Λ, and

B in table 1. Further results in this supplementary material are presented in dimensionless

variables.

The simulations are conducted using a homogeneous rectilinear grid of 300 × 60 ele-

ments. The finite-difference scheme for equations (S.1)–(S.4) is constructed based on the

finite-volume approach and the upwind approximation of fluxes. The fully-implicit method

is applied (Aziz & Settari, 1979; Fanchi, 2006). The time step is restricted by the CFL con-

dition to reduce the truncation error. The maximum Courant number is set to 0.5. A grid

independence study has been performed using both twice denser and coarser grids. It has

been found that the numerical solution does not depend on the considered grid resolutions.

The usage of the rather coarse grid of 300× 60 elements is justified by the near-critical Ra

(Ra ≤ 1.1Rac), which does not result in significant deviation of flow parameters from the

basic solution (3.5).

To perturb the quiescent thermally stratified fluid at t = 0, we impose small perturbations

of temperature on the initial distribution (3.5). A small quantity of absolute value less than

10−4 produced by a pseudo-random number generator is added to Θf and Θm in every grid

block. Thus, all waves longer than the size of the grid blocks (∼ 10−2) are perturbed. The

perturbations of only particular wavelengths (with ReΩ > 0) grow in the simulation with

rising t, leading to the onset of convection, although these wavelengths are not specifically

distinguished by the numerical algorithm. The calculated patterns are presented in figure 10

at t > 100 when the quasi-steady state is reached.

Let us discuss in more detail the simulation results for the 4 selected scenarios, corre-

sponding to the regimes F , Mz, Cf , and P shown in figure 10. The scenarios are also supple-

mented with the animated figures showing evolution of the parameters as the quasi-steady

state is reached. All parameters drawn in the animations are dimensionless. The parameters

in Φf and Φm are shown in the upper and lower panels of the animations, respectively. The

red and blue curves are isotherms Θj = i/10, i = 1 . . . 9 in Φf and Φm, respectively. The

arrows indicate the direction of fluid flow (uj). The thin grey curves, also shown in figure

10, are the streamlines calculated using the ParaView software (www.paraview.org). The

points evenly distributed along the straight line z = 1/2 are chosen as the seed points for the

streamlines. Therefore, some regions in the Fz, Cfx, Cmx, and Mz patterns are not covered

with streamlines because not all of them intersect the straight line z = 1/2. The distribution
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of qfm, i.e., the fluid flux from Φf into Φm, is shown in the upper panel. The distribution

of Θf − Θm, which defines the conductive heat flux from Φf into Φm, is given in the lower

panel.

As predicted by the analytical study, the co-rotating regime F develops in the case shown

in figure 10(a). The velocities uf and um at any r are pointing in the same direction, and the

amplitude of temperature
∣∣δΘf

∣∣ in Φf is larger than |δΘm| in Φm. The horizontal dimension

of the convection cells is close to 1, which reflects that kxy is close to π in the growing

solutions to equation (4.9). As shown in the animated figure, the mode Fz is growing faster

than the other modes during the initial transient processes. However, as the quasi-steady

state is reached later on, the mode F becomes the dominant one.

The regime Mz develops in the case shown in figure 10(b). Here, the cellular flow pattern

develops in Φm, whereas the vertical component of uf is reverted. Thus, the convection cells

in Φf are broken.

The counter-rotating regime Cf develops in the case shown in figure 10(c). Here, the

fluid velocities in Φj are pointing in opposite directions at any position r. As discussed in

§ 7, the inequality
∣∣δΘf

∣∣ > |δΘm| holds. The convection cells are stretched in the horizontal

direction. This is supported by the theory because kc in the corresponding solution to

equation (4.9) is almost half of π (table 1).

The plane flow regime occurs in the case shown in figure 10(d). Here, the flow is directed

upward in Φf and downward in Φm. Consequently, the isotherms in Φf and Φm are shifted

upward and downward, respectively, as compared to the linear distribution in the basic state

(3.5). As shown in the animated figure, the cellular convection develops during the initial

transient processes. However, as the quasi-steady state is reached later on, the mode P

becomes the dominant one.
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