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1. Curvature variation setup: cylinders in an infinite regular lattice

Here we provide further details relative to our setup, which consists of a lattice of
cylinders with two discrete curvatures. With a computational domain of range [0, 1], we
instantiate a lattice of 16 cylinders in a 4 × 4 grid with periodic boundary conditions.
To accommodate 4 cylinders in our domain, while allowing a curvature variation up to
κmax/κmin = 6, we fix κmax = 0.02 as a reference length scale. Then the constant centre-
to-centre distance between these cylinders is s = 1/4 = 0.25 = 12.5κmax. Maintaining s
constant allows us to consistently compare systems characterized by different curvature
ratios. The value of s is chosen to span a reasonable curvature ratio range, and at the
same time is practical from an experimental, fabrication standpoint. The oscillatory
amplitude (A) for all the cylinders in the lattice is kept constant (Aκmax = 0.1). This
is because oscillating the fluid with constant amplitude is experimentally convenient.
By virtue of keeping a constant amplitude, the streaming flow for the lattice system
can be characterized with one value of Rs (Rs = A2ω/ν). Lastly, fixing a constant
amplitude allows us to extend our understanding (with two curvatures) to individual
complex shapes with multiple curvatures. Indeed all local curvatures of an individual
streaming body undergo the same absolute oscillation amplitudes. We not here that
we performed cursory phase space explorations for different spacings between cylinders,
and observed that the qualitative nature of the emerging streaming fields is preserved,
although the boundaries between different topological phases shift quantitatively.

2. Lattice system: flow bifurcations

2.1. Heteroclinic orbit bifurcation via asymmetric background flow

Here we revisit the heteroclinic orbit bifurcation observed for the transition II → V of
figure 4 in the main text. We identified the reduced Hamiltonian form with the unfolding
term coefficient β that represents symmetry (β = 0) or asymmetry (β 6= 0) in our lattice
setup (figure 1(a, b)). We now demonstrate that the notion of breaking symmetry extends
to more than just curvature variation, by breaking symmetry via the superposition of a
uniform background flow. Figure 1(c) presents a Phase II flow topology. We focus on the
highlighted saddles and the heteroclinic orbits joining them. As we break symmetry along
the horizontal axis by imposing a slow mean flow, we observe the predicted flow topology
change (figure 1(d)), where the vertically oriented heteroclinic orbits break up, while the
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Figure 1. Asymmetric background flow. We demonstrate that the heteroclinic orbit bifurcation,
associated with the transition II → V in the lattice phase space, can be triggered by breaking
symmetry via superimposing a slow uniform background flow, instead of using curvature
variations as in the main text. (a, b) present the reduced Hamiltonian form for the bifurcation,
with the flow topology change on imposing the mean flow in the lattice system, shown in (c, d).
We note that in (c, d) all cylinders present the same radius so that κmax/κmin = 1.

horizontally oriented ones do not. Through this illustration, we demonstrate that the
control on asymmetry via means other than curvature variation leads to identical flow
topology rearrangements. This confirms the physical intuiton provided by the identified
reduced Hamiltonian form.

2.2. Reflecting umbilic bifurcation: two step rationale

We now focus on the transition between Phase VI and VII in the lattice phase space. We
notice that the system appears symmetric about the horizontal and vertical axes. Yet, the
transition into Phase VII occurs in two distinct steps: 1) a hyperbolic reflecting umbilic
bifurcation that involves a topological rearrangement about the vertical axis of symmetry
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Figure 2. Reflecting umbilic bifurcation. (a) Illustration of the flow topology near the smaller
cylinder for Phase VI. (b) Angular location of the highlighted saddle observed in simulations θs,
compared to the expected symmetric location θi. This small yet non-negligible difference creates
asymmetry between the flow topology along the vertical and horizontal axes, resulting in the
two step reflecting umbilic bifurcation.

of the cylinder, and 2) an elliptic reflecting umbilic bifurcation that involves a topological
rearrangement about the horizontal axis of symmetry of the cylinder. To investigate this
preference for one axis over another, we focus on figure 2(a), which depicts the flow
topology near the smaller cylinder in Phase VI. We focus on the highlighted saddles and
the corresponding local flow topology depicted in figure 2(b). We notice a small yet non-
negligible difference between the angular location of the highlighted saddle in simulations
(θs), and the expected location (θi) based on the symmetry of the setup. Upon increasing
simulation’s resolution, or varying background flow oscillation direction, the magnitude
of this angular deviation can be reduced, but not removed, so that a small preference
persists. We attribute this small preferential deviation to the fact that the cylinders
location is not (and cannot be) perfectly aligned with the discretization grid.

This small local deviation from symmetry is responsible for the observed sequence
of umbilic bifurcations. The sequence order is found to be robust: indeed a saddle
misalignment with respect to the 45◦ angle consistently triggers the hyperbolic reflecting
umbilic bifurcation first (as δACκ decreases), either on the vertical or horizontal axis,
depending on θs < 45◦ or θs > 45◦. The induced local topological rearrangement is then
found to be the natural precursor of the elliptic reflecting umbilic bifurcation, which
occurs on the axis perpendicular to the first bifurcation. Therefore, to summarize, the
boundaries between Phase VI, hidden Phase H and Phase VII are robustly associated with
the bifurcation identified in the main text, as empirically verified though the comparison
with triangle and square experiments. We note that in a perfect lattice, this series of
two steps may coalesce in a single step. Nonetheless, this is only a theoretical scenario
which we could not attain computationally and that cannot be expected to manifest
experimentally.

2.3. Phase I → II: higher order reflecting umbilic bifurcation

Here, we illustrate the bifurcation Phase I → II, as depicted in figure 3(a). To identify
this bifurcation we focus on two adjacent unit cell quadrants of the lattice. We note the
absence of driven flow regions around the cylinders in Phase I (figure 3(b)) and their
presence in phase II (figure 3(k), marked in pink). This flow topology change occurs in
two consecutive steps, passing through another hidden phase of §4.2.8 in the main text.

In the first step, we draw attention to the absence of recirculating regions in Phase I
(figure 3(b)) and their presence in figure 3(d) (comprised of five saddles and four centres,
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Figure 3. Phase I → hidden Phase H: higher order hyperbolic reflecting umbilic bifurcation. (a)
The transition is highlighted on the phase space (with a zoomed in view) and the corresponding
reduced Hamiltonian form is reported. (b, c, d) Flows representative of Phase I, Phase I
approaching the transition, and hidden Phase H, respectively. (e, f, g) Bifurcations captured as
contours of the reduced Hamiltonian form. (h) The transition from hidden Phase H → II (higher
order elliptic reflecting umbilic bifurcation) is highlighted on the phase space (with a zoomed in
view) and the corresponding reduced Hamiltonian form is reported. (i, j, k) Flows representative
of hidden Phase H, at the transition, and Phase II, respectively. (l, m, n) Bifurcations captured
as contours of the reduced Hamiltonian form. The newly created recirculating region pairs are
marked in pink.
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marked in pink). We note that the latter flow field corresponds to the hidden Phase H.
The simplest Hamiltonian form that captures this transition is H(x, y) = ax3y+ bxy3 +
βxy with ab > 0, which corresponds to a higher order hyperbolic reflecting umbilic
bifurcation (higher order with respect to the ones shown in the main text, on account
of the additional symmetry due to same curvature cylinders) (Bosschaert & Hanßmann
2013). Here βxy is the unfolding term, that controls the appearance (going from β > 0 to
β < 0) of the recirculating regions and their size (figure 3(e-g)). In our lattice system, the
appearance and size of these regions can be controlled by decreasing δAC , which decreases
the DC layer thickness δDC of all the cylinders. This pulls the streamlines adjacent to
the marked saddle, in four opposite directions (figure 3(c)), causing it to eventually
split into five saddles and four centres (figure 3(d)). Topologically, this manifests as four
counter-rotating recirculating regions, thus revealing Phase H.

The second step of the Phase I → II transition occurs upon further decreasing δAC ,
immediately after the previous bifurcation, thus rendering the hidden Phase H very
narrow. We focus on the saddles in the highlighted region of the unit cell, in the hidden
Phase H (figure 3(i)). After the transition these saddles are located on the vertical axis
passing through the highlighted region, thus recovering Phase VII (figure 3(k)). The
simplest Hamiltonian form that captures this rearrangement is H(x, y) = ax3y+ bxy3 +
βxy with ab < 0, which corresponds to a higher order elliptic reflecting umbilic bifurcation
(Bosschaert & Hanßmann 2013). Here βxy is the unfolding term, that captures whether
the saddles are present (β < 0) or absent (β > 0) on the horizontal axis (figure 3(l-n)), as
well as their distance. Similar to the previous step, a decrease in δAC (i.e δDC ↓) causes
a pull on the streamlines immediately adjacent to the cylinder’s DC layers. This time
though, the saddles created in the previous step are now pushed towards the saddle on
the vertical axis in the highlighted region, extending the recirculating region pairs. Upon
reaching the saddle on the vertical axis, the two opposite saddles collapse (figure 3(j ))
and split along the vertical axis (figure 3(k)). We note that this bifurcation is observed
along all the edges of the unit cell. These new saddles completely define the driven flow
regions around the cylinders, thus recovering Phase II.

3. Effects of lattice spacing variation on the phase space

Here we illustrate the effects of varying centre-to-centre spacing s between the cylin-
ders, on the lattice system phase space. Figure 4 presents three different lattice phase
spaces with three different spacings (sκmax = 6.25, 12.5 (main text) and 25). Inaccessible
regions of curvature (due to unphysical cylinder–cylinder surface overlap) are marked in
grey. First, we observe no additional flow bifurcations/phases in the system as spacing
is varied, confirming the qualitative picture provided in the main text. Second, as
the spacing increases the phase boundaries corresponding to the supercritical pitchfork
bifurcation (Phases IV→ VI and V→ VII), which result due to the interaction between
the driven flow regions of the larger cylinders, are pushed towards high κmax/κmin

regions. We predict that eventually at sufficiently large spacing, these boundaries and
corresponding phases will vanish, thus reducing the richness of the system. Third, in
the limit of large spacing (sκmax → ∞, i.e. in an unbounded domain) the interaction
between cylinders becomes less and less important, so that practically only Phases I and
II will be retained (figure 1 of main text). This is intuitively consistent since this scenario
effectively correspond to individual cylinders in an unbounded domain, for which only
single and double boundary layer regimes are possible.

We further rationalize our results by presenting the streaming-velocity decay fields for
varying lattice spacings. Figure 5(a) presents the velocity profiles along the horizontal
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Figure 4. Effects of lattice spacing variation: Three different lattice phase spaces with varying
cylinder separation distances sκmax are shown to demonstrate its effect on the phase boundaries.
Inaccessible regions (due to cylinder–cylinder surface overlap) are marked in grey.
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Figure 5. Effects of lattice spacing variation: (a) Non-dimensional velocity magnitude
profiles along the horizontal axis passing through centers of cylinders of two different radii
(κmax/κmin = 2), as a function of the distance from the point equidistant from the cylinder
centers, for three different center-to-center spacings in the lattice. Comparison between velocity
magnitude profile for the smaller cylinder in the lattice with the largest spacing (sκmax = 25)
compared to the velocity magnitude profile for a single cylinder with the same δACκ in an
unbounded domain in (b) driven bulk flow regime and (c) Stokes-like flow regime.
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Figure 6. Background flow variation for a diamond cylinder. (a, b) Reduced Hamiltonian form
contours for hyperbolic reflecting umbilic bifurcation, associated with the transition hidden
Phase H → Phase VI in the lattice phase space. A topologically equivalent transition is observed
on increasing δAC/a, both in experiments (c, d) and simulations (e, f ). (g) Mapping of the
observed transition on the lattice phase space.

axis passing through the centers of cylinders of two different radii (κmax/κmin = 2),
for different spacings, such that the equidistant point is always situated on the origin
(rκmax = 0). Here, the smaller cylinder is to the left of the origin, while the larger
cylinder is to the right. As the lattice spacing increases, the velocity profiles change
qualitatively and eventually approach the unbounded single cylinder limit. This is shown
for the smaller cylinder in figure 5(b), where the velocity profile for the highest spacing
case (sκmax = 25, dashed purple) is overlaid with an equivalent profile for a single cylinder
oscillating in the driven-bulk flow regime (in green). This equivalence is also noticed in
the Stokes-like flow regime, which we show in figure 5(c).

We conclude based on both these observations that as the lattice spacing increases,
the streaming flows generated due to individual cylinders effectively interact to a lesser
extent. This in turn reduces the range of different flow topologies/bifurcations that can
be observed, to the ones that simply correspond to superposition of their individual
streaming flow fields, in the limit of high spacing.

4. Generalization to individual streaming bodies: additional examples

Here we provide a number of additional examples which demonstrate that our intu-
ition from the phase space carries on to various streaming geometries and oscillatory
background flow conditions. All subsequent studies entail a single shape immersed in an
unbounded domain.

4.1. Comparison against experiments: streaming triangles and diamonds

Expanding on the examples of the main text, we further test our understanding against
a different set of experiments. We consider an oscillating diamond cylinder (of side 2a)
(Tatsuno 1974) and a horizontally oriented triangle cylinder (of side 2a) (Tatsuno 1975).

Figure 6 illustrates the hyperbolic reflecting umbilic bifurcation for a diamond cylinder,
observed on increasing δAC/a from 0.096 to 0.565, similar to the one observed in the
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Figure 7. Background flow variation for a horizontally oriented equilateral triangle cylinder. (a,
b) Reduced Hamiltonian form contours for hyperbolic reflecting umbilic bifurcation, associated
with the transition hidden Phase H → Phase VI in the lattice phase space. A topologically
equivalent transition is observed on increasing δAC/a, both in experiments (c, d) and simulations
(e, f ). (g) Mapping of the observed transition on the lattice phase space.

lattice phase space. Figure 6(a, b) illustrates the predicted flow topology change based
on the reduced Hamiltonian contours, with confirmations against flow topologies observed
in experiments (figure 6(c, d)) and simulations (figure 6(e, f )).

Figure 7 illustrates the hyperbolic reflecting umbilic bifurcation for the triangle cylin-
der, observed on increasing δAC/a from 0.084 to 0.16, similar to the one observed in the
lattice phase space. Once again experiments (figure 7(c, d)) and simulations (figure 7(e,
f )) confirm our predictions.

4.2. Shape parametrization

Figure 8 illustrates the parameterization for the complex convex shapes, investigated in
§5.2 of the main text and in §4.3 of the supplementary information. Figure 8(a) presents
the parametrization for the hybrid circular–square bullet of figure 12(a) in the main
text. This hybrid cylinder presents top-down asymmetry—the top side is a circle with
constant curvature κ0, while the bottom is a square with rounded corners of constant
curvature κv. As κv is varied from κ0 to higher values (→ ∞), the shape morphs from
a circle to a circle–square hybrid with increasingly sharper corners. Figure 8(b) presents
the parametrization for the hybrid circular–elliptic cylinder, which we use to demonstrate
additional examples of flow topology design in the following sections. This hybrid cylinder
presents left-right asymmetry— the right side is a circle with constant curvature κ0, while
the left side is an ellipse of aspect ratio AR (defined as height/breadth, where height is
kept constant). As AR is varied from 1 to higher values, the shape morphs from a circle
to a circular–elliptic cylinder with a higher AR elliptic side (with corresponding higher
curvature at the corners).

4.3. Manipulation of streaming flow topology: circle to a circle–ellipse

Figure 9(a) illustrates the morphing from a circular cylinder of uniform aspect ratio
(AR = 1, defined as height/breadth) to a body with a circular side having the same
curvature κ0 and an elliptic side with aspect ratio AR > 1. Parametrization of this
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Figure 8. Parametrization of (a) the hybrid circular–square cylinder (main text) and (b) the
circular–elliptic cylinder.

hybrid shape can be found in figure 8(b). For such AR, the body presents constant
curvature κ0 on the circular side and a range of curvatures (κ0/AR to AR2κ0) on the
elliptic side, thus introducing curvature variation in a regulated fashion.

We start by choosing a δACκmax for which the streaming flow topology for a circular
cylinder (AR = 1) lies in the finite thickness DC layer regime (figure 9(d)). We focus
on the heteroclinic orbits highlighted in figure 9(d). Recalling our observations from the
lattice system, we predict that introducing fore-aft shape asymmetry will lead to the
breaking of these orbits, as captured by the heteroclinic orbit bifurcation from Phase II
→ V (figure 9(b, c)) in the main text. Indeed, testing a shape with curvature asymmetry
(i.e. AR > 1) confirms this prediction, as seen from the flow topology in figure 9(e).

After testing our understanding against the effects of breaking symmetry, we analyse
how flow topology evolves on further increase in curvature variation (i.e. increase in AR)
for the body. Figure 10(e) depicts the streaming flow topology for the body with AR > 1,
where the shape parameters and flow topology are retained from figure 9(e). We focus on
the highlighted saddle (defining DC layer extent) forming the homoclinic orbit, and the
centre within this orbit. As AR increases, (figure 10(a)), the local curvature on the body
near the saddle increases. Based on the transitions V → VII and III → VI associated
with such a curvature increase in the lattice phase space, we predict that this will lead to
a decrease in the saddle–centre distance, while shrinking the corresponding homoclinic
orbit. Then beyond a critical value of AR the orbit will eventually disappear through a
saddle–centre annihilation, similar to the bifurcation seen from Phase V → VII. Figure
10(b, c, d) demonstrate the reduced Hamiltonian form contours for this system and
showcase the saddle–centre bifurcation. Indeed, testing a shape with curvature variation
(higher AR) confirms these predictions, as seen from the flow topologies in figure 10(f,
g).

For completion, figure 11 presents a step-by-step systematic variation of geometric and
background flow properties for the morphing from a circular cylinder to a hybrid circular–
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Figure 9. Breaking symmetry. (a) Illustration of morphing a circular cylinder into a hybrid
circular–elliptic cylinder with a circular side and an elliptic side with varying aspect ratio
(AR). (b, c) present the reduced Hamiltonian form contours for heteroclinic orbit bifurcation,
associated with the transition II → V in the lattice phase space. The morphed body presents
a topologically equivalent transition on breaking symmetry, presented in (d, e). (f ) Mapping of
the observed transition on the lattice phase space.

elliptic cylinder. We observe a wide range of flow topologies, which are predicted (reduced
Hamiltonian as grey contours) by drawing intuition from the transitions observed in the
lattice phase space with corresponding confirmations from simulations. We note that
the same set of bifurcations as that of the circular–square cylinder in the main text,
are encountered for the circular–elliptic cylinder. Figure 11(b, c) illustrate the hetero-
clinic orbit bifurcation (prediction and confirmation), observed on breaking symmetry
described above. Figure 11(c, d) illustrate the saddle–centre bifurcation (prediction and
confirmation), observed on curvature variation described above. Figure 11(d, e) and figure
11(e, f ) illustrate the elliptic reflecting umbilic bifurcation and the hyperbolic reflecting
umbilic bifurcation, respectively, observed on increasing δAC in the lattice phase space,
with the predicted flow topology change based on the reduced Hamiltonian contours and
confirmations against flow topologies observed in simulations.

In summary, this section illustrates an additional example of how our approach can be
employed to predict and design streaming flow topologies, in a rational fashion.
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Figure 10. Varying curvature ratio. (a) Illustration of increasing curvature variation (increasing
AR) for the circular–elliptic hybrid. (b, c, d) present the reduced Hamiltonian form contours for
saddle–centre bifurcation, similar to the supercritical pitchfork bifurcation, associated with the
transition V → VII in the lattice phase space. A topologically equivalent transition is observed
on morphing the body, presented in (e, f, g). (h) Mapping of the observed transition on the
lattice phase space.

4.4. Varying ellipse aspect ratio

Figure 12(a) illustrates the use of our phase space in the case of ellipses of varying
aspect ratio (defined as height/breadth). We keep the major axis (height = L) fixed.
This allows us to introduce curvature variation in a regulated fashion by spanning AR.
We start by choosing a δACκmax and AR for which the streaming flow topology for the
ellipse lies in the finite thickness DC layer regime (figure 12(b)). We note that a mapping
of this local flow topology to Phase I and II of our lattice system is not possible due to
the variation of curvature on an ellipse (Phase I and II necessitate constant curvature).
Additionally, mapping to Phases III, IV and V does not exist as we do not break fore-aft
or top-down shape symmetry when we vary AR for an ellispe (figure 12(a)). This means
that we don’t break symmetry for the DC layer bounding heteroclinic orbits which are
necessary for Phases III, IV and V to exist.

We focus on the highlighted saddles bounding the DC layers on the vertical axis, near
the top and bottom ends of the ellipse. These structures closely resemble Phase VII of
figure 7(k, n) in the main text, where the second saddle (not imaged in experiments)
is located at infinity. Thus, as δACκmax increases (on increasing AR), we predict that
the saddles will progressively move outwards, to approach the saddles at infinity and
undergo an elliptic reflecting umbilic bifurcation. This has the overall effect to “open
up” the DC layers on the vertical axis of the ellipse. Additionally, we note that the
highlighted flow structures on the left/right of the streaming shape can be mapped to
Phase H of figure 7(d, g) (with one saddle at infinity). Therefore, as a side effect of the
increase in δACκmax, we predict that the saddles at infinity enter the imaged domain and
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Figure 11. Flow topology manipulation. (a) Illustration of morphing a circular cylinder into a
hybrid circular–elliptic cylinder. Mapping of the observed transitions on the lattice phase space.
(b-f ) present the different topologies observed on geometric and background flow variation,
with the concerned critical points highlighted and the predictions (reduced Hamiltonian form
contours) illustrated as grey contours.



14

CHANGING 

CURVATURE 

RATIO

(b) (c) (d)

(a)

(e)

1 2 3

1

2

3

Figure 12. Flow topology manipulation. (a) Illustration of varying curvature of an ellipse
by varying the aspect ratio AR. (b-d) present the different topologies observed on geometric
variation, with the concerned critical points highlighted and the predictions (reduced
Hamiltonian form contours) illustrated as grey contours. (e) Mapping of the observed transitions
on the lattice phase space.

form closed recirculating regions on the left and right side of the ellipse. Computations
of figure 12(c) confirm this intuition.

We then focus on the highlighted saddles and centres forming recirculating regions on
the horizontal axis of the ellipse in figure 12(c). These structures closely resemble the
hidden Phase H of figure 7(d, g). Based on our phase space, we predict that as δACκmax

increases (on increasing AR), the system will transition to a new topology corresponding
to Phase VI, via a hyperbolic reflecting umbilic bifurcation. This is a consequence of the
saddles and centres moving closer and closer, eventually collapsing and vanishing. Once
again, computations of figure 12(d) confirm this intuition.

We note that in the ellipse case, due to its geometrical properties, some phases captured
in our lattice phase space do not exist (see above discussion). Nonetheless, the phases
and the transitions that do exist remain consistent with the lattice phase space, and so
our analysis is still valid.
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