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I. ADDITIONAL EXPERIMENTAL DETAILS

Here we provide additional details of the experiments carried out. We dissolved polyethylene oxide (PEO,

molecular weight = 2×106 g/mol, Sigma-Aldrich) powder into a buffer solution (0.01 mM phosphate buffer

mixed with 0.5% Tween 20 (Fisher Scientific)) at a concentration of 250 ppm. The particle suspension

was prepared by suspending polystyrene spheres (Thermo Scientific) in the viscoelastic solution. The

particle concentration was kept low (<0.1% in volume fraction) in the fluid, and hence particle-particle

interaction and its effect on fluid viscosity can be neglected. The microchannel was primed with the

particle-free suspending fluid prior to the introduction of the particle suspension. The microchannel used

in the experiment was 2 cm long with a rectangular cross-section of 66 µm × 54 µm. Particle motion

was visualized at the outlet of the microchannel through an inverted microscope (Nikon Eclipse TE2000U)

equipped with a CCD camera (Nikon DS-Qi1MC). Digital videos were recorded at a rate of 15 frames per

second, from which the superimposed images were obtained. We further processed these images in the

Nikon imaging software (NIS-Elements AR 3.22).

II. RECIPROCAL THEOREM FOR CROSS-STREAM MIGRATION

We follow Ho and Leal [1] to find the migration velocity in this section. The momentum of the unknown

O(De) field is governed by

∇ · σH(1) = 0, where σH(1) = −p(1)I + (∇v(1) +∇vT(1)) + s(0), (1)

where I is the identity matrix and T denotes transpose. The boundary conditions at the particle surface are

v(1) = Us(1) + Ωs(1) × r at r = 1 (2)

The test field is chosen to be that generated by a sphere moving in the positive z-direction with a unit

velocity in a quiescent Newtonian medium.

∇ · σt = 0, where σt = −ptI + (∇ut +∇ut T ). (3)

The boundary condition for test field is

ut = ez at r = 1. (4)
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Taking the inner product of (1) with ut and (3) with v(1) over the entire fluid domain (from particle surface

to infinity) and equating: ∫
Vf

ut · (∇ · σH(1))dV =

∫
Vf

v(1) · (∇ · σt)dV. (5)

A rearrangement provides∫
Vf

∇ · (ut · σH(1))dV −
∫
Vf

σH(1) : ∇ut dV =

∫
Vf

∇ · (v(1) · σt)dV −
∫
Vf

σt : ∇v(1) dV. (6)

Using Gauss-divergence theorem and rearranging the integrals, we obtain

−
∫
Sp

(ut · σH(1)) · n dS +

∫
Sp

(v(1) · σt) · n dS =

∫
Vf

σH(1) : ∇ut dV −
∫
Vf

σt : ∇v(1) dV, (7)

where n is the outward unit vector, normal to the surface. Using the boundary conditions (2) and (4), we

write

−ez ·
∫
Sp

σH(1) · n dS +Us (1) ·
∫
Sp

σt · n dS =

∫
Vf

σH(1) : ∇ut dV −
∫
Vf

σt : ∇v(1) dV. (8)

The first term on the left hand side in the above equation is zero for a freely suspended neutrally buoyant

sphere. Accounting for the leading order wall correction1, the second term on the left hand side is the

hydrodynamic drag which is −6π(1 +O(κ))Us (1)z. The O(κ) corrections are due to wall effects. Expanding

the right hand side, we obtain

−6π(1+O(κ))Us z(1) =

∫
Vf

(
−p(1)I +∇v(1) +∇vT(1) + s(0)

)
: ∇ut dV−

∫
Vf

(
−ptI +∇ut +∇ut T

)
: ∇v(1) dV.

(9)

The incompressibility condition results in: −p(I : ∇ut) = −p(I : ∇u(1)) = 0. Upon further simplifications,

we obtain (9) as

6π(1 +O(κ))Us z(1) = −
∫
Vf

s(0) : ∇ut dV. (10)

Thus, we obtain the migration velocity as

DeUs z(1) = UHmig = − 1

6π(1 +O(κ))
De

∫
Vf

s(0) : ∇ut dV. (11)

Superscript H denotes the hydrodynamic contribution.

III. EVALUATION OF TRANSLATIONAL AND ROTATIONAL VELOCITY

Here we provide the details of evaluation of Us x (0) and Ωs y (0). To estimate the wall correction, we

require the third reflection of velocity field because the particle is absent in the second reflection[3].

1For κ � 1, the wall correction can be calculated using both method of reflections and the expression provided by Brenner

[2, p.246] (originally derived by Hendrik Lorentz Theoret. Phys. 1907 1 23). In Section IV, we compare the wall correction,

obtained from method of reflections, with [2].
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A. Second reflection of the disturbance velocity

In this subsection, we provide the details of the evaluation of (2)v(0). Equations governing the second

reflection are

∇ · (2)v(0) = 0, ∇2
(2)v(0) −∇(2)p(0) = 0,

(2)v(0) = Haζw
(
∇(1)ψ +∇(2)ψ

)
− (1)v(0) at the walls,

(2)v(0) → 0 at r →∞.

 (12)

The solution is determined by the form of non-homogeneity in the boundary condition at the

walls. Following the procedure described in Appendix A.1 (main text), the non-homogeneities

(Haζw∇(1)ψ, Haζw∇(2)ψ and (1)v(0)) are represented in the outer scale coordinates before applying Faxén’s

integral transformation. (2)ψ is already defined in the integral form (see A10 of main text), whereas (1)ψ

and (1)v(0) have been defined in the particle scale (A4 and 3.34, respectively). Upon performing Faxén

transformation of the non-homogeneities, we find that ∇̃(2)ψ̃ has a different integral form in comparison to

(1)ṽ(0) and ∇̃(1)ψ̃. Therefore, we use superposition and seek (2)ṽ(0) as (2 i)ṽ(0) + (2 ii)ṽ(0). These components

satisfy the following boundary conditions:

(2 i)ṽ(0) = Haζwκ∇̃((1)ψ̃)− (1)ṽ(0) at the walls, (13)

(2 ii)ṽ(0) = Haζwκ∇̃((2)ψ̃) at the walls. (14)

Solution to (2 i)ṽ(0): In view of the wall boundary condition in (13), (1)ψ (A4) and (1)v(0) (3.34) are

represented in the outer coordinates ((1)ψ̃ and (1)ṽ(0)) and then Faxén transformation is applied. ψ̃1 has

already been represented in outer coordinates and transformed into integral form (see (A9)); (1)v(0) is

represented into outer coordinates and then Faxén’s transformation is applied. Various terms present in the

expression for (1)v(0) (such as: 1/r, x2/r3, · · · in (3.34)) are transformed into Faxén’s integral form. Upon

deriving each term, we obtain the RHS of wall boundary condition (13) as:

Haζwκ∇̃(1)ψ̃ − (1)ṽ(0) = − 1

2π



+∞∫
−∞

+∞∫
−∞

e

(
iΘ−λ|z̃|

2

) (
`1 + (ξ2/λ2)

(
`2 + λ|z̃|

2 `3

))
dξdη

+∞∫
−∞

+∞∫
−∞

e

(
iΘ−λ|z̃|

2

) (
`2 + λ|z̃|

2 `3

)
((ηξ)/λ2) dξdη

+∞∫
−∞

+∞∫
−∞

e

(
iΘ−λ|z̃|

2

) (
`1 + `2 +

(
1 + λ|z̃|

2

)
`3

)
((iξ)/λ) z̃

|z̃| dξdη


(15)

Here, Θ = (x̃ξ + ỹη)/2 and λ = (ξ2 + η2)1/2. The terms `1, `2, and `3 are given by:

`1 =
A1κ

λ
+
κ2

4

(
C1 +

D1

3

)
z̃

|z̃|
− F1κ

3

12
λ+

5G1κ
3

12
λ,

`2 =
−A1κ

2λ
− B1λκ

3

8
+
Haζwb1λκ

3

2
+
F1κ

3

24
λ+

13G1κ
3

24
λ+

E1κ
4λ2

48

z̃

|z̃|
− H1κ

5

96
λ3,

`3 =
−A1κ

2λ
− D1κ

2

12

z̃

|z̃|
− 5G1κ

3

8
λ. (16)

Following the procedure carried out in Appendix A.1, we assume the form of (2 i)ṽ(0) =

{(2 i)ũ(0), (2 i)ṽ(0), (2 i)w̃(0)} as:
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(2 i)ũ(0) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
eiΘ

 e(−λz̃
2

)
(
`4 + ξ2

λ2

(
`5 + λz̃

2 `6
))

+ e(+λz̃
2

)
(
`7 + ξ2

λ2

(
`8 − λz̃

2 `9
))
 dξdη (17)

(2 i)ṽ(0) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
eiΘ

 e(−λz̃
2

)
(
`5 + λz̃

2 `6
)

+ e(+λz̃
2

)
(
`8 − λz̃

2 `9
)
(ξη

λ2

)
dξdη (18)

(2 i)w̃(0) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
eiΘ

 e(−λz̃
2

)
(
`4 + `5 +

(
1 + λz̃

2

)
`6
)

− e(+λz̃
2

)
(
`7 + `8 +

(
1− λz̃

2

)
`9
)
( iξ

λ

)
dξdη (19)

Here, the terms `4, `5, · · · `9 are functions of the Fourier variable λ and coefficients (A1, B1, C1 and D1)

defined in eq.3.36 (of main text). The terms `4, `5, · · · `9 in the above equations can be expressed in terms

of the known `1, `2, and `3. Towards this, we form a system of six equations by substituting (15) into RHS

of (13). The LHS of (13) is represented by (17)-(19). Since the integrals on both the sides are identical, we

obtain the following linear system of equations:



e
sλ
2 e

sλ
2 ξ2

/
λ2 −e sλ2 sξ2

/
2λ e−

sλ
2 e−

sλ
2 ξ2

/
λ2 e−

sλ
2 sξ2

/
2λ

0 e
sλ
2 −e sλ2 sλ/2 0 e−

sλ
2 e−

sλ
2 sλ/2

e
sλ
2 e

sλ
2 e

sλ
2 (1− sλ/2) −e− sλ

2 −e− sλ
2 −e− sλ

2 (1 + sλ/2)

e−
1
2 (1−s)λ e−

1
2 (1−s)λξ2

/
λ2 e−

1
2 (1−s)λ (1− s) ξ2

/
2λ e

1
2 (1−s)λ e

1
2 (1−s)λξ2

/
λ2 −e 1

2 (1−s)λ (1− s) ξ2
/

2λ

0 e−
1
2 (1−s)λ e−

1
2 (1−s)λ (1− s)λ/2 0 e

1
2 (1−s)λ −e 1

2 (1−s)λ (1− s)λ/2

e−
1
2 (1−s)λ e−

1
2 (1−s)λ e−

1
2 (1−s)λ (1 + (1− s)λ/2) −e 1

2 (1−s)λ −e 1
2 (1−s)λ −e 1

2 (1−s)λ (1− (1− s)λ/2)





`4

`5

`6

`7

`8

`9



=



−e− sλ
2

(
`1b +

(
`2 + `3bsλ

2

)
ξ2
/
λ2
)

−e− sλ
2 (`2 + `3bsλ/2)

e−
sλ
2 (`1b + `2 + `3b (1 + sλ/2))

−e− 1
2 (1−s)λ

(
`1t +

(
`2 + 1

2`3t (1− s)λ
)
ξ2
/
λ2
)

−e− 1
2 (1−s)λ

(
`2 + 1

2`3t (1− s)λ
)

−e− 1
2 (1−s)λ (`1t + `2 + `3t (1 + (1− s)λ/2))


(20)

Here, `1b, `3b and `1t, `3t correspond to the boundary condition at the bottom wall z̃/|z̃| < 0 and the top wall z̃/|z̃| > 0,

respectively.

Solution to (2 ii)ṽ(0): Upon substituting (2)ψ̃ in (14), we obtain (2 ii)ṽ(0) = {2 (ii)ũ(0), 2 (ii)ṽ(0), 2 (ii)w̃(0):

2 (ii)ũ(0) =
Haζwκ

3

2π

+∞∫
−∞

+∞∫
−∞

eiΘ
(

e(−λz̃2 )b2 + e(+λz̃
2 )b3

)( i2ξ2

2λ

)
dξdη (21)

2 (ii)ṽ(0) =
Haζwκ

3

2π

+∞∫
−∞

+∞∫
−∞

eiΘ
(

e(−λz̃2 )b2 + e(+λz̃
2 )b3

)( i2ξη
2λ

)
dξdη (22)
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2 (ii)w̃(0) =
Haζwκ

3

2π

+∞∫
−∞

+∞∫
−∞

eiΘ
(
−e(−λz̃2 )b2 + e(+λz̃

2 )b3

)(λz̃
2

)(
iξ

λ

)
dξdη (23)

Combining (17)-(19) and (21)-(23), we obtain the second reflection of velocity field:

2ũ(0) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
eiΘ

 e(−λz̃
2

)
(
`4 + ξ2

λ2

(
`5 + λz̃

2 `6 −
Haζwκ3λ

2 b2

))
+ e(+λz̃

2
)
(
`7 + ξ2

λ2

(
`8 − λz̃

2 `9 −
Haζwκ3λ

2 b3

))
 dξdη, (24)

2ṽ(0) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
eiΘ

 e(−λz̃
2

)
(
`5 + λz̃

2 `6 −
Haζwκ3λ

2 b2

)
+ e(+λz̃

2
)
(
`8 − λz̃

2 `9 −
Haζwκ3λ

2 b3

)
(ξη

λ2

)
dξdη, (25)

2w̃(0) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
eiΘ

 e(−λz̃
2

)
(
`4 + `5 +

(
1 + λz̃

2

)
`6 − Haζwκ3λz̃

2 b2

)
− e(+λz̃

2
)
(
`7 + `8 +

(
1− λz̃

2

)
`9 − Haζwκ3λz̃

2 b3

)
( iξ

λ

)
dξdη. (26)

Since the particle is absent in the formulation of even-numbered reflections, the hydrodynamic drag and

torque due to even fields vanishes [3]. Thus, the correction to particle translational and rotational velocity

arises from the odd-numbered reflections. Hence, we evaluate the next reflection.

B. Third reflection of the disturbance velocity

The equations governing the third reflection are

∇ · v(0) = 0,∇2v
(0)
3 −∇p

(0)
3 = 0,

v
(0)
3 = −v(0)

2 at r = 1,

v
(0)
3 → 0 at r →∞.

 (27)

The particle boundary condition in (27) requires us to calculate (2)ṽ(0) in the vicinity of the particle. Since,

(2)ṽ(0) is represented in outer scaled coordinates, the particle surface is equivalent to r̃ → 0. Upon expanding

(2)ṽ(0) about the origin, we obtain:

(2)v(0)

∣∣
r=1

=

∞∫
0


(2`4 + `5 + 2`7 + `8)λ/2 − (2`4 + `5 − `6 − 2`7 − `8 + `9)λ2κz/4 + · · ·

0

(−`4 − `5 − `6 + `7 + `8 + `9)λ2κx/4 + · · ·

dλ (28)

Having obtained the boundary condition for v
(0)
3 at the particle surface, we use Lamb’s method to obtain

the third reflection. The resulting solution has a form similar to eq.3.34 (of main text) with coefficients

A3, B3, C3 and D3. These coefficients are in the integral form, owing to the integral form of (28). Since

the force-free and torque free arguments require only the coefficients of stokeslet and rotlet field [4, p. 88],

here we only report the coefficients A3 and C3 for brevity:

A3 = −3
4

∞∫
0

1
2 (2`4 + `5 + 2`7 + `8)λdλ

C3 = 1
4

∞∫
0

(
1
2 (`4 − 2`6 − `7 + 2`9)λ2κ

)
dλ.

(29)
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Substitution of `4, `5, · · · `9 (obtained from eq.20) into the above equations results in representation of A3, C3

in terms of A1, B1, C1 and D1:

A3 ≡ A1 (κWA) +B1

(
κ3WB

)
+ C1

(
κ2WC

)
+D1

(
κ2WD

)
+ · · · , (30)

C3 ≡ A1

(
κ2XA

)
+B1

(
κ3XB

)
+ C1

(
κ4XC

)
+ · · · . (31)

Here, κWA, κ
3WB, κ

2WC and κ2WD represent the wall corrections to hydrodynamic drag due to

the reflection of stokeslet, source-dipole, rotlet and stresslet disturbances, respectively. Similarly,

κ2XA, κ3XB, and κ4XC represent wall correction to the hydrodynamic torque. It should be noted that

the form of equations (30)-(31) is valid for a general problem of a particle suspended in wall bounded flow

[5]. These equations show that the leading order correction to viscous drag is O(κ) (through κWA) and

that to torque is O(κ2) (through κ2XA).

C. Evaluation of Translational and Rotational velocity

Translational and rotational velocity of the particle can be found by imposing force-free and torque-free

conditions on the particle at O(De0): FH (0) + FM = 0 and LH (0) + LM = 0. Since the Maxwell force

FM acts only along the z-axis (∼ O(κ4)) and the torque LM is zero, Us x (0) and Ωs y (0) are found by

hydrodynamic force and torque balance in x and y directions, respectively.

The force and torque on a spherical particle can be expressed through the coefficients of stokeslet and

rotlet disturbances, respectively. Following Kim and Karrila [4, p. 88], we write the force-free and torque

free condition as:

FH x (0) = −4π (A1 +A3 + · · ·) and LHy (0) = −8π (C1 + C3 + · · ·) . (32)

The coefficients A1, C1 and A3, C3 are associated with the Lamb’s solution of the first reflection of the

velocity disturbance (eq.3.36 of main text) and third reflection (30-31), respectively. Substitution of (30)

and (31) into (32) results in a system of two equations for: U
(0)
s x and Ω

(0)
s y . Imposing the hydrodynamic force

and torque to be zero and upon expanding the coefficients A1, B1, · · ·H1, we obtain:

Us x (0) ≈ α+
γ

3
− 10κ2βWD

9(1 + κWA)
, (33)

Ωs y (0) ≈
β

2
−

5XDκ3β
/

3

(1 + κWA)
. (34)

Since the correction to particle velocity is O(κ2) and higher, we neglect the wall contribution to Us x (0) and

Ωs y (0).

D. Order of magnitude of the disturbance velocity field and test field

We substitute the leading order estimates derived in (33-34): Us x(0) = α + γ
3 and Ωs y(0) = β/2 in the

coefficients (eq.3.36 main text). We then substitute the coefficients in (1)v(0) (eq.3.34main text) and (2)v(0)
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(eq.24-26). The order of magnitude of reflections of the velocity fields is obtained as:

(1)v(0) ∼ HaζpO(1/r3) + β O(1/r2) + β O(1/r4) + γ O(1/r3) + γ O(1/r5), (35a)

(2)ṽ(0) ∼ β O(κ2) +HaζpO(κ3) + · · · . (35b)

In the second reflection, the outer scale coordinate r̃ ∼ O(1). Similarly, following the framework of Ho and

Leal [5], the order of magnitude of test velocity field can be obtained

(1)u
t ∼ O(1/r) +O(1/r2), (36a)

(2)ũ
t ∼ O(κ) +O(κ3) + · · · . (36b)

IV. EVALUATION OF O(κ) WALL CORRECTION TO MIGRATION VELOCITY

Here we provide the expression for first order correction to viscous drag (it appears in the denominator

of eq-3.26 and eq-3.30 in the main text). The cross-stream migration of the particle generates stokeslet

and source dipole disturbances. Eq. (30) showed that the leading order correction to drag arrives as κWA.

Thus, the relationship between non-dimensional cross-stream force and velocity is Fmig = 6π(1+κWA)Umig.

Here,

WA =

∫ ∞
0

−3eλ(−s)

16 (−eλ (λ2 + 2) + e2λ + 1)

(
−4eλs − eλ+2λs

(
λ2(s− 1)2 − 2λ(s− 1) + 2

)
+e2λs

(
λ2s2 − 2λs+ 2

)
+ eλ

(
λ2(s− 1)2 + 2λ(s− 1) + 2

)
−2eλ+λs

(
λ2 + 2λ+ λ3(−(s− 1))s+ 2

)
− e2λ

(
λ2s2 + 2λs+ 2

))
dλ.

(37)

Fig.1(a) shows that WA increases near the walls i.e. the migration velocity becomes slower as the particle

approaches walls. Using a bispherical coordinate system for a particle approaching a wall, Brenner [2, p.246]

reported a similar increase in viscous resistance. He provided an approximate expression for a single wall

configuration: κWA ≈ 9
8sκ (originally derived by Hendrik Lorentz Theoret. Phys. 1907 1 23). Fig.1(b)

shows a good agreement between our predictions and Brenner [2]. The slight mismatch near s = 0.5 is due

to the effect of second wall.

0 0.2 0.4 0.6 0.8 1
0

10

20

s

W
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0 0.1 0.2 0.3 0.4 0.5
0

10

20

s

W
A

Current work

Brenner [2]

FIG. 1: (a) Variation of leading order viscous resistance to hydrodynamic drag. (b) Comparison with the single wall

expression provided by Brenner [2].
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