Electrokinetically Enhanced Cross-stream Particle Migration in Viscoelastic Flows: Supplementary Material

A. Choudhary ${ }^{1}$, Di Li ${ }^{2}$, T. Renganathan ${ }^{1}$, Xiangchun Xuan ${ }^{2}$, and S. Pushpavanam ${ }^{1}$
${ }^{1}$ Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036 TN, India and
${ }^{2}$ Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, USA

I. ADDITIONAL EXPERIMENTAL DETAILS

Here we provide additional details of the experiments carried out. We dissolved polyethylene oxide (PEO, molecular weight $=2 \times 10^{6} \mathrm{~g} / \mathrm{mol}$, Sigma-Aldrich) powder into a buffer solution (0.01 mM phosphate buffer mixed with 0.5% Tween 20 (Fisher Scientific)) at a concentration of 250 ppm . The particle suspension was prepared by suspending polystyrene spheres (Thermo Scientific) in the viscoelastic solution. The particle concentration was kept low ($<0.1 \%$ in volume fraction) in the fluid, and hence particle-particle interaction and its effect on fluid viscosity can be neglected. The microchannel was primed with the particle-free suspending fluid prior to the introduction of the particle suspension. The microchannel used in the experiment was 2 cm long with a rectangular cross-section of $66 \mu \mathrm{~m} \times 54 \mu \mathrm{~m}$. Particle motion was visualized at the outlet of the microchannel through an inverted microscope (Nikon Eclipse TE2000U) equipped with a CCD camera (Nikon DS-Qi1MC). Digital videos were recorded at a rate of 15 frames per second, from which the superimposed images were obtained. We further processed these images in the Nikon imaging software (NIS-Elements AR 3.22).

II. RECIPROCAL THEOREM FOR CROSS-STREAM MIGRATION

We follow Ho and Leal [1] to find the migration velocity in this section. The momentum of the unknown $O(D e)$ field is governed by

$$
\begin{equation*}
\nabla \cdot \boldsymbol{\sigma}_{H(1)}=\mathbf{0}, \quad \text { where } \boldsymbol{\sigma}_{H(1)}=-p_{(1)} \mathbf{I}+\left(\nabla \boldsymbol{v}_{(1)}+\nabla \boldsymbol{v}_{(1)}^{T}\right)+\mathbf{s}_{(0)} \tag{1}
\end{equation*}
$$

where \mathbf{I} is the identity matrix and T denotes transpose. The boundary conditions at the particle surface are

$$
\begin{equation*}
\boldsymbol{v}_{(1)}=\boldsymbol{U}_{s(1)}+\boldsymbol{\Omega}_{s(1)} \times \boldsymbol{r} \quad \text { at } r=1 \tag{2}
\end{equation*}
$$

The test field is chosen to be that generated by a sphere moving in the positive z-direction with a unit velocity in a quiescent Newtonian medium.

$$
\begin{equation*}
\nabla \cdot \boldsymbol{\sigma}_{t}=\mathbf{0}, \quad \text { where } \boldsymbol{\sigma}_{t}=-p^{t} \mathbf{I}+\left(\nabla \boldsymbol{u}^{t}+\nabla \boldsymbol{u}^{t T}\right) \tag{3}
\end{equation*}
$$

The boundary condition for test field is

$$
\begin{equation*}
\boldsymbol{u}^{t}=\boldsymbol{e}_{z} \quad \text { at } r=1 \tag{4}
\end{equation*}
$$

Taking the inner product of (1) with \boldsymbol{u}^{t} and (3) with $\boldsymbol{v}_{(1)}$ over the entire fluid domain (from particle surface to infinity) and equating:

$$
\begin{equation*}
\int_{V_{f}} \boldsymbol{u}^{t} \cdot\left(\nabla \cdot \boldsymbol{\sigma}_{H(1)}\right) d V=\int_{V_{f}} \boldsymbol{v}_{(1)} \cdot\left(\nabla \cdot \boldsymbol{\sigma}_{t}\right) d V . \tag{5}
\end{equation*}
$$

A rearrangement provides

$$
\begin{equation*}
\int_{V_{f}} \nabla \cdot\left(\boldsymbol{u}^{t} \cdot \boldsymbol{\sigma}_{H(1)}\right) d V-\int_{V_{f}} \boldsymbol{\sigma}_{H(1)}: \nabla \boldsymbol{u}^{t} d V=\int_{V_{f}} \nabla \cdot\left(\boldsymbol{v}_{(1)} \cdot \boldsymbol{\sigma}_{t}\right) d V-\int_{V_{f}} \boldsymbol{\sigma}_{t}: \nabla \boldsymbol{v}_{(1)} d V . \tag{6}
\end{equation*}
$$

Using Gauss-divergence theorem and rearranging the integrals, we obtain

$$
\begin{equation*}
-\int_{S_{p}}\left(\boldsymbol{u}^{t} \cdot \boldsymbol{\sigma}_{H(1)}\right) \cdot \boldsymbol{n} d S+\int_{S_{p}}\left(\boldsymbol{v}_{(1)} \cdot \boldsymbol{\sigma}_{t}\right) \cdot \boldsymbol{n} d S=\int_{V_{f}} \boldsymbol{\sigma}_{H(1)}: \nabla \boldsymbol{u}^{t} d V-\int_{V_{f}} \boldsymbol{\sigma}_{t}: \nabla \boldsymbol{v}_{(1)} d V, \tag{7}
\end{equation*}
$$

where \boldsymbol{n} is the outward unit vector, normal to the surface. Using the boundary conditions (2) and (4), we write

$$
\begin{equation*}
-\boldsymbol{e}_{z} \cdot \int_{S_{p}} \boldsymbol{\sigma}_{H(1)} \cdot \boldsymbol{n} d S+\boldsymbol{U}_{s(1)} \cdot \int_{S_{p}} \boldsymbol{\sigma}_{t} \cdot \boldsymbol{n} d S=\int_{V_{f}} \boldsymbol{\sigma}_{H(1)}: \nabla \boldsymbol{u}^{t} d V-\int_{V_{f}} \boldsymbol{\sigma}_{t}: \nabla \boldsymbol{v}_{(1)} d V \tag{8}
\end{equation*}
$$

The first term on the left hand side in the above equation is zero for a freely suspended neutrally buoyant sphere. Accounting for the leading order wall correction ${ }^{1}$, the second term on the left hand side is the hydrodynamic drag which is $-6 \pi(1+O(\kappa)) U_{s(1) z}$. The $O(\kappa)$ corrections are due to wall effects. Expanding the right hand side, we obtain
$-6 \pi(1+O(\kappa)) U_{s z(1)}=\int_{V_{f}}\left(-p_{(1)} \mathbf{I}+\nabla \boldsymbol{v}_{(1)}+\nabla \boldsymbol{v}_{(1)}^{T}+\mathbf{s}_{(0)}\right): \nabla \boldsymbol{u}^{t} d V-\int_{V_{f}}\left(-p^{t} \mathbf{I}+\nabla \boldsymbol{u}^{t}+\nabla \boldsymbol{u}^{t T}\right): \nabla \boldsymbol{v}_{(1)} d V$.
The incompressibility condition results in: $-p\left(\mathbf{I}: \nabla \boldsymbol{u}^{t}\right)=-p\left(\mathbf{I}: \nabla \boldsymbol{u}_{(1)}\right)=0$. Upon further simplifications, we obtain (9) as

$$
\begin{equation*}
6 \pi(1+O(\kappa)) U_{s z(1)}=-\int_{V_{f}} \mathbf{s}_{(0)}: \nabla \boldsymbol{u}^{t} d V . \tag{10}
\end{equation*}
$$

Thus, we obtain the migration velocity as

$$
\begin{equation*}
D e U_{s z(1)}=U_{m i g}^{H}=-\frac{1}{6 \pi(1+O(\kappa))} D e \int_{V_{f}} \mathbf{s}_{(0)}: \nabla \boldsymbol{u}^{t} d V . \tag{11}
\end{equation*}
$$

Superscript H denotes the hydrodynamic contribution.

III. EVALUATION OF TRANSLATIONAL AND ROTATIONAL VELOCITY

Here we provide the details of evaluation of $U_{s x(0)}$ and $\Omega_{s y(0)}$. To estimate the wall correction, we require the third reflection of velocity field because the particle is absent in the second reflection[3].

[^0]
A. Second reflection of the disturbance velocity

In this subsection, we provide the details of the evaluation of ${ }_{(2)} \boldsymbol{v}_{(0)}$. Equations governing the second reflection are

$$
\left.\begin{array}{rl}
\nabla \cdot{ }_{(2)} \boldsymbol{v}_{(0)} & =0, \quad \nabla^{2}{ }_{(2)} \boldsymbol{v}_{(0)}-\nabla_{(2)} p_{(0)}=\mathbf{0}, \tag{12}\\
{ }_{(2)} \boldsymbol{v}_{(0)} & =H a \zeta_{w}\left(\nabla_{(1)} \psi+\nabla_{(2)} \psi\right)-{ }_{(1)} \boldsymbol{v}_{(0)} \quad \text { at the walls, } \\
{ }_{(2)} \boldsymbol{v}_{(0)} & \rightarrow \mathbf{0} \quad \text { at } r \rightarrow \infty .
\end{array}\right\}
$$

The solution is determined by the form of non-homogeneity in the boundary condition at the walls. Following the procedure described in Appendix A. 1 (main text), the non-homogeneities $\left(H a \zeta_{w} \nabla_{(1)} \psi, H a \zeta_{w} \nabla_{(2)} \psi\right.$ and $\left.{ }_{(1)} \boldsymbol{v}_{(0)}\right)$ are represented in the outer scale coordinates before applying Faxén's integral transformation. ${ }_{(2)} \psi$ is already defined in the integral form (see A10 of main text), whereas ${ }_{(1)} \psi$ and ${ }_{(1)} \boldsymbol{v}_{(0)}$ have been defined in the particle scale (A4 and 3.34, respectively). Upon performing Faxén transformation of the non-homogeneities, we find that $\tilde{\nabla}_{(2)} \tilde{\psi}$ has a different integral form in comparison to ${ }_{(1)} \tilde{\boldsymbol{v}}_{(0)}$ and $\tilde{\nabla}_{(1)} \tilde{\psi}$. Therefore, we use superposition and seek ${ }_{(2)} \tilde{\boldsymbol{v}}_{(0)}$ as ${ }_{(2 i)} \tilde{\boldsymbol{v}}_{(0)}+{ }_{(2 i i)} \tilde{\boldsymbol{v}}_{(0)}$. These components satisfy the following boundary conditions:

$$
\begin{gather*}
{ }_{(2 i)} \tilde{\boldsymbol{v}}_{(0)}=H a \zeta_{w} \kappa \tilde{\nabla}\left({ }_{(1)} \tilde{\psi}\right)-{ }_{(1)} \tilde{\boldsymbol{v}}_{(0)} \quad \text { at the walls, } \tag{13}\\
{ }_{(2 i i)} \tilde{\boldsymbol{v}}_{(0)}=H a \zeta_{w} \kappa \tilde{\nabla}\left({ }_{(2)} \tilde{\psi}\right) \quad \text { at the walls. } \tag{14}
\end{gather*}
$$

Solution to ${ }_{(2 i)} \tilde{\boldsymbol{v}}_{(0)}$: In view of the wall boundary condition in (13), ${ }_{(1)} \psi(\mathrm{A} 4)$ and ${ }_{(1)} \boldsymbol{v}_{(0)}$ (3.34) are represented in the outer coordinates ${ }_{\left({ }_{(1)}\right)} \tilde{\psi}$ and $\left.{ }_{(1)} \tilde{\boldsymbol{v}}_{(0)}\right)$ and then Faxén transformation is applied. $\tilde{\psi}_{1}$ has already been represented in outer coordinates and transformed into integral form (see (A9)); (1) $\boldsymbol{v}_{(0)}$ is represented into outer coordinates and then Faxén's transformation is applied. Various terms present in the expression for ${ }_{(1)} \boldsymbol{v}_{(0)}$ (such as: $1 / r, x^{2} / r^{3}, \cdots$ in (3.34)) are transformed into Faxén's integral form. Upon deriving each term, we obtain the RHS of wall boundary condition (13) as:

$$
H a \zeta_{w} \kappa \tilde{\nabla}_{(1)} \tilde{\psi}-{ }_{(1)} \tilde{\boldsymbol{v}}_{(0)}=-\frac{1}{2 \pi}\left[\begin{array}{l}
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{\left(\mathrm{i} \Theta-\frac{\lambda|\tilde{z}|}{2}\right)}\left(\ell_{1}+\left(\xi^{2} / \lambda^{2}\right)\left(\ell_{2}+\frac{\lambda|\tilde{z}|}{2} \ell_{3}\right)\right) d \xi d \eta \tag{15}\\
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{\left(\mathrm{i} \Theta-\frac{\lambda|\tilde{z}|}{2}\right)}\left(\ell_{2}+\frac{\lambda|\tilde{z}|}{2} \ell_{3}\right)\left((\eta \xi) / \lambda^{2}\right) d \xi d \eta \\
\int_{-\infty}^{+\infty+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{\left(\mathrm{i} \Theta-\frac{\lambda|z|}{2}\right)}\left(\ell_{1}+\ell_{2}+\left(1+\frac{\lambda|\tilde{z}|}{2}\right) \ell_{3}\right)((\mathrm{i} \xi) / \lambda) \frac{\tilde{z}}{|\vec{z}|} d \xi d \eta
\end{array}\right]
$$

Here, $\Theta=(\tilde{x} \xi+\tilde{y} \eta) / 2$ and $\lambda=\left(\xi^{2}+\eta^{2}\right)^{1 / 2}$. The terms ℓ_{1}, ℓ_{2}, and ℓ_{3} are given by:

$$
\begin{align*}
& \ell_{1}=\frac{A_{1} \kappa}{\lambda}+\frac{\kappa^{2}}{4}\left(C_{1}+\frac{D_{1}}{3}\right) \frac{\tilde{z}}{|\tilde{z}|}-\frac{F_{1} \kappa^{3}}{12} \lambda+\frac{5 G_{1} \kappa^{3}}{12} \lambda, \\
& \ell_{2}=\frac{-A_{1} \kappa}{2 \lambda}-\frac{B_{1} \lambda \kappa^{3}}{8}+\frac{H a \zeta_{w} b_{1} \lambda \kappa^{3}}{2}+\frac{F_{1} \kappa^{3}}{24} \lambda+\frac{13 G_{1} \kappa^{3}}{24} \lambda+\frac{E_{1} \kappa^{4} \lambda^{2}}{48} \frac{\tilde{z}}{|\tilde{z}|}-\frac{H_{1} \kappa^{5}}{96} \lambda^{3}, \\
& \ell_{3}=\frac{-A_{1} \kappa}{2 \lambda}-\frac{D_{1} \kappa^{2}}{12} \frac{\tilde{z}}{|\tilde{z}|}-\frac{5 G_{1} \kappa^{3}}{8} \lambda . \tag{16}
\end{align*}
$$

Following the procedure carried out in Appendix A.1, we assume the form of ${ }_{(2 i)} \tilde{\boldsymbol{v}}_{(0)}=$ $\left\{{ }_{(2 i)} \tilde{u}_{(0)},{ }_{(2 i)} \tilde{v}_{(0)},{ }_{(2 i)} \tilde{w}_{(0)}\right\}$ as:

$$
\begin{gather*}
{ }_{(2 i)} \tilde{u}_{(0)}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} \Theta}\binom{\mathrm{e}^{\left(\frac{-\lambda \tilde{z}}{2}\right)}\left(\ell_{4}+\frac{\xi^{2}}{\lambda^{2}}\left(\ell_{5}+\frac{\lambda \tilde{z}}{2} \ell_{6}\right)\right)}{+\mathrm{e}^{\left(\frac{+\lambda \tilde{z}}{2}\right)}\left(\ell_{7}+\frac{\xi^{2}}{\lambda^{2}}\left(\ell_{8}-\frac{\lambda \tilde{z}}{2} \ell_{9}\right)\right)} \mathrm{d} \xi \mathrm{~d} \eta \tag{17}\\
(2 i) \tilde{v}_{(0)}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} \Theta\binom{\mathrm{e}^{\left(\frac{-\lambda \tilde{z}}{2}\right)}\left(\ell_{5}+\frac{\lambda \tilde{z}}{2} \ell_{6}\right)}{+\mathrm{e}^{\left(\frac{+\lambda \tilde{z}}{2}\right)}\left(\ell_{8}-\frac{\lambda \tilde{z}}{2} \ell_{9}\right)}\left(\frac{\xi \eta}{\lambda^{2}}\right) \mathrm{d} \xi \mathrm{~d} \eta} \begin{array}{l}
(2 i) \tilde{w}_{(0)}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} \Theta}\binom{\mathrm{e}^{\left(\frac{-\lambda \tilde{z}}{2}\right)}\left(\ell_{4}+\ell_{5}+\left(1+\frac{\lambda \tilde{z}}{2}\right) \ell_{6}\right)}{-\mathrm{e}^{\left(\frac{+\lambda \tilde{z}}{2}\right)}\left(\ell_{7}+\ell_{8}+\left(1-\frac{\lambda \tilde{z}}{2}\right) \ell_{9}\right)}\left(\frac{\mathrm{i} \xi}{\lambda}\right) \mathrm{d} \xi \mathrm{~d} \eta
\end{array} \tag{18}
\end{gather*}
$$

Here, the terms $\ell_{4}, \ell_{5}, \cdots \ell_{9}$ are functions of the Fourier variable λ and coefficients $\left(A_{1}, B_{1}, C_{1}\right.$ and $\left.D_{1}\right)$ defined in eq. 3.36 (of main text). The terms $\ell_{4}, \ell_{5}, \cdots \ell_{9}$ in the above equations can be expressed in terms of the known ℓ_{1}, ℓ_{2}, and ℓ_{3}. Towards this, we form a system of six equations by substituting (15) into RHS of (13). The LHS of (13) is represented by (17)-(19). Since the integrals on both the sides are identical, we obtain the following linear system of equations:

$$
\begin{align*}
& {\left[\begin{array}{cccccc}
e^{\frac{s \lambda}{2}} & e^{\frac{s \lambda}{2}} \xi^{2} / \lambda^{2} & -e^{\frac{s \lambda}{2}} s \xi^{2} / 2 \lambda & e^{-\frac{s \lambda}{2}} & e^{-\frac{s \lambda}{2}} \xi^{2} / \lambda^{2} & e^{-\frac{s \lambda}{2}} s \xi^{2} / 2 \lambda \\
0 & e^{\frac{s \lambda}{2}} & -e^{\frac{s \lambda}{2}} s \lambda / 2 & 0 & e^{-\frac{s \lambda}{2}} & e^{-\frac{s \lambda}{2}} s \lambda / 2 \\
e^{\frac{s \lambda}{2}} & e^{\frac{s \lambda}{2}} & e^{\frac{s \lambda}{2}}(1-s \lambda / 2) & -e^{-\frac{s \lambda}{2}} & -e^{-\frac{s \lambda}{2}} & -e^{-\frac{s \lambda}{2}}(1+s \lambda / 2) \\
e^{-\frac{1}{2}(1-s) \lambda} & e^{-\frac{1}{2}(1-s) \lambda} \xi^{2} / \lambda^{2} & e^{-\frac{1}{2}(1-s) \lambda}(1-s) \xi^{2} / 2 \lambda & e^{\frac{1}{2}(1-s) \lambda} & e^{\frac{1}{2}(1-s) \lambda} \xi^{2} / \lambda^{2} & -e^{\frac{1}{2}(1-s) \lambda}(1-s) \xi^{2} / 2 \lambda \\
0 & e^{-\frac{1}{2}(1-s) \lambda} & e^{-\frac{1}{2}(1-s) \lambda}(1-s) \lambda / 2 & 0 & e^{\frac{1}{2}(1-s) \lambda} & -e^{\frac{1}{2}(1-s) \lambda}(1-s) \lambda / 2 \\
e^{-\frac{1}{2}(1-s) \lambda} & e^{-\frac{1}{2}(1-s) \lambda} & e^{-\frac{1}{2}(1-s) \lambda}(1+(1-s) \lambda / 2) & -e^{\frac{1}{2}(1-s) \lambda} & -e^{\frac{1}{2}(1-s) \lambda} & -e^{\frac{1}{2}(1-s) \lambda}(1-(1-s) \lambda / 2)
\end{array}\right]\left[\begin{array}{l}
\ell_{4} \\
\ell_{5} \\
\ell_{6} \\
\ell_{7} \\
\ell_{8} \\
\ell_{9}
\end{array}\right]} \\
& =\left[\begin{array}{c}
-e^{-\frac{s \lambda}{2}}\left(\ell_{1 b}+\left(\ell_{2}+\frac{\ell_{3 b} s \lambda}{2}\right) \xi^{2} / \lambda^{2}\right) \\
-e^{-\frac{s \lambda}{2}}\left(\ell_{2}+\ell_{3 b} s \lambda / 2\right) \\
e^{-\frac{s \lambda}{2}}\left(\ell_{1 b}+\ell_{2}+\ell_{3 b}(1+s \lambda / 2)\right) \\
-e^{-\frac{1}{2}(1-s) \lambda}\left(\ell_{1 t}+\left(\ell_{2}+\frac{1}{2} \ell_{3 t}(1-s) \lambda\right) \xi^{2} / \lambda^{2}\right) \\
-e^{-\frac{1}{2}(1-s) \lambda}\left(\ell_{2}+\frac{1}{2} \ell_{3 t}(1-s) \lambda\right) \\
-e^{-\frac{1}{2}(1-s) \lambda}\left(\ell_{1 t}+\ell_{2}+\ell_{3 t}(1+(1-s) \lambda / 2)\right)
\end{array}\right] \tag{20}
\end{align*}
$$

Here, $\ell_{1 b}, \ell_{3 b}$ and $\ell_{1 t}, \ell_{3 t}$ correspond to the boundary condition at the bottom wall $\tilde{z} /|\tilde{z}|<0$ and the top wall $\tilde{z} /|\tilde{z}|>0$, respectively.

Solution to ${ }_{(2 i i)} \tilde{\boldsymbol{v}}_{(0)}$: Upon substituting ${ }_{(2)} \tilde{\psi}$ in (14), we obtain ${ }_{(2 i i)} \tilde{\boldsymbol{v}}_{(0)}=\left\{\begin{array}{l}2(i i) \\ \tilde{u}_{(0)}, 2(i i) \\ \tilde{v}_{(0)}, 2(i i) \\ \tilde{w}_{(0)}\end{array}\right.$

$$
\begin{align*}
& 2(i i) \tilde{u}_{(0)}=\frac{H a \zeta_{w} \kappa^{3}}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} \Theta}\left(\mathrm{e}^{\left(-\frac{\lambda \tilde{z}}{2}\right)} b_{2}+\mathrm{e}^{\left(+\frac{\lambda \tilde{z}}{2}\right)} b_{3}\right)\left(\frac{i^{2} \xi^{2}}{2 \lambda}\right) \mathrm{d} \xi \mathrm{~d} \eta \tag{21}\\
& 2(i i) \tilde{v}_{(0)}=\frac{H a \zeta_{w} \kappa^{3}}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} \Theta}\left(\mathrm{e}^{\left(-\frac{\lambda \tilde{z}}{2}\right)} b_{2}+\mathrm{e}^{\left(+\frac{\lambda \tilde{z}}{2}\right)} b_{3}\right)\left(\frac{i^{2} \xi \eta}{2 \lambda}\right) \mathrm{d} \xi \mathrm{~d} \eta \tag{22}
\end{align*}
$$

$$
\begin{equation*}
2(i i) \tilde{w}_{(0)}=\frac{H a \zeta_{w} \kappa^{3}}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} \Theta}\left(-\mathrm{e}^{\left(-\frac{\lambda \tilde{z}}{2}\right)} b_{2}+\mathrm{e}^{\left(+\frac{\lambda \tilde{z}}{2}\right)} b_{3}\right)\left(\frac{\lambda \tilde{z}}{2}\right)\left(\frac{\mathrm{i} \xi}{\lambda}\right) \mathrm{d} \xi \mathrm{~d} \eta \tag{23}
\end{equation*}
$$

Combining (17)-(19) and (21)-(23), we obtain the second reflection of velocity field:

$$
\begin{gather*}
{ }_{2} \tilde{u}_{(0)}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} \Theta}\binom{\mathrm{e}^{\left(\frac{-\lambda \tilde{z}}{2}\right)}\left(\ell_{4}+\frac{\xi^{2}}{\lambda^{2}}\left(\ell_{5}+\frac{\lambda \tilde{z}}{2} \ell_{6}-\frac{H a \zeta_{w} \kappa^{3} \lambda}{2} b_{2}\right)\right)}{+\mathrm{e}^{\left(\frac{+\lambda \tilde{z}}{2}\right)}\left(\ell_{7}+\frac{\xi^{2}}{\lambda^{2}}\left(\ell_{8}-\frac{\lambda \tilde{z}}{2} \ell_{9}-\frac{H a \zeta_{w} \kappa^{3} \lambda}{2} b_{3}\right)\right.} \mathrm{d} \xi \mathrm{~d} \eta \tag{24}\\
{ }_{2} \tilde{v}_{(0)}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} \Theta}\binom{\mathrm{e}^{\left(\frac{-\lambda \tilde{z}}{2}\right)}\left(\ell_{5}+\frac{\lambda \tilde{z}}{2} \ell_{6}-\frac{H a \zeta_{w} \kappa^{3} \lambda}{2} b_{2}\right)}{+\mathrm{e}^{\left(\frac{+\lambda \tilde{z}}{2}\right)}\left(\ell_{8}-\frac{\lambda \tilde{z}}{2} \ell_{9}-\frac{H a \zeta_{w} \kappa^{3} \lambda}{2} b_{3}\right)}\left(\frac{\xi \eta}{\lambda^{2}}\right) \mathrm{d} \xi \mathrm{~d} \eta \tag{25}\\
{ }_{2} \tilde{w}_{(0)}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} \Theta}\binom{\mathrm{e}^{\left(\frac{-\lambda \tilde{z}}{2}\right)}\left(\ell_{4}+\ell_{5}+\left(1+\frac{\lambda \tilde{z})}{2}\right) \ell_{6}-\frac{H a \zeta_{w} \kappa^{3} \lambda \tilde{z}}{2} b_{2}\right)}{-\mathrm{e}^{\left(\frac{+\lambda \tilde{z}}{2}\right)}\left(\ell_{7}+\ell_{8}+\left(1-\frac{\lambda \tilde{z}}{2}\right) \ell_{9}-\frac{H a \zeta_{w} \kappa^{3} \lambda \tilde{z}}{2} b_{3}\right)}\left(\frac{\mathrm{i} \xi}{\lambda}\right) \mathrm{d} \xi \mathrm{~d} \eta . \tag{26}
\end{gather*}
$$

Since the particle is absent in the formulation of even-numbered reflections, the hydrodynamic drag and torque due to even fields vanishes [3]. Thus, the correction to particle translational and rotational velocity arises from the odd-numbered reflections. Hence, we evaluate the next reflection.

B. Third reflection of the disturbance velocity

The equations governing the third reflection are

$$
\left.\begin{array}{rl}
\nabla \cdot \boldsymbol{v}^{(0)} & =0, \nabla^{2} \boldsymbol{v}_{3}^{(0)}-\nabla p_{3}^{(0)}=\mathbf{0} \tag{27}\\
\boldsymbol{v}_{3}^{(0)} & =-\boldsymbol{v}_{2}^{(0)} \quad \text { at } r=1 \\
\boldsymbol{v}_{3}^{(0)} & \rightarrow \mathbf{0} \quad \text { at } r \rightarrow \infty
\end{array}\right\}
$$

The particle boundary condition in (27) requires us to calculate ${ }_{(2)} \tilde{\boldsymbol{v}}_{(0)}$ in the vicinity of the particle. Since, ${ }_{(2)} \tilde{\boldsymbol{v}}_{(0)}$ is represented in outer scaled coordinates, the particle surface is equivalent to $\tilde{r} \rightarrow 0$. Upon expanding ${ }_{(2)} \tilde{\boldsymbol{v}}_{(0)}$ about the origin, we obtain:

$$
\left.{ }_{(2)} \boldsymbol{v}_{(0)}\right|_{r=1}=\int_{0}^{\infty}\left[\begin{array}{l}
\left(2 \ell_{4}+\ell_{5}+2 \ell_{7}+\ell_{8}\right) \lambda / 2-\left(2 \ell_{4}+\ell_{5}-\ell_{6}-2 \ell_{7}-\ell_{8}+\ell_{9}\right) \lambda^{2} \kappa z / 4+\cdots \tag{28}\\
0 \\
\left(-\ell_{4}-\ell_{5}-\ell_{6}+\ell_{7}+\ell_{8}+\ell_{9}\right) \lambda^{2} \kappa x / 4+\cdots
\end{array}\right] \mathrm{d} \lambda
$$

Having obtained the boundary condition for $\boldsymbol{v}_{3}^{(0)}$ at the particle surface, we use Lamb's method to obtain the third reflection. The resulting solution has a form similar to eq. 3.34 (of main text) with coefficients A_{3}, B_{3}, C_{3} and D_{3}. These coefficients are in the integral form, owing to the integral form of (28). Since the force-free and torque free arguments require only the coefficients of stokeslet and rotlet field [4, p. 88], here we only report the coefficients A_{3} and C_{3} for brevity:

$$
\begin{align*}
& A_{3}=\frac{-3}{4} \int_{0}^{\infty} \frac{1}{2}\left(2 \ell_{4}+\ell_{5}+2 \ell_{7}+\ell_{8}\right) \lambda \mathrm{d} \lambda \\
& C_{3}=\frac{1}{4} \int_{0}^{\infty}\left(\frac{1}{2}\left(\ell_{4}-2 \ell_{6}-\ell_{7}+2 \ell_{9}\right) \lambda^{2} \kappa\right) \mathrm{d} \lambda \tag{29}
\end{align*}
$$

Substitution of $\ell_{4}, \ell_{5}, \cdots \ell_{9}$ (obtained from eq.20) into the above equations results in representation of A_{3}, C_{3} in terms of A_{1}, B_{1}, C_{1} and D_{1} :

$$
\begin{gather*}
A_{3} \equiv A_{1}\left(\kappa W_{A}\right)+B_{1}\left(\kappa^{3} W_{B}\right)+C_{1}\left(\kappa^{2} W_{C}\right)+D_{1}\left(\kappa^{2} W_{D}\right)+\cdots \tag{30}\\
C_{3} \equiv A_{1}\left(\kappa^{2} \mathcal{X}_{A}\right)+B_{1}\left(\kappa^{3} \mathcal{X}_{B}\right)+C_{1}\left(\kappa^{4} \mathcal{X}_{C}\right)+\cdots \tag{31}
\end{gather*}
$$

Here, $\kappa W_{A}, \kappa^{3} W_{B}, \kappa^{2} W_{C}$ and $\kappa^{2} W_{D}$ represent the wall corrections to hydrodynamic drag due to the reflection of stokeslet, source-dipole, rotlet and stresslet disturbances, respectively. Similarly, $\kappa^{2} \mathcal{X}_{\mathcal{A}}, \kappa^{3} \mathcal{X}_{\mathcal{B}}$, and $\kappa^{4} \mathcal{X}_{\mathcal{C}}$ represent wall correction to the hydrodynamic torque. It should be noted that the form of equations (30)-(31) is valid for a general problem of a particle suspended in wall bounded flow [5]. These equations show that the leading order correction to viscous drag is $O(\kappa)$ (through κW_{A}) and that to torque is $O\left(\kappa^{2}\right)\left(\right.$ through $\left.\kappa^{2} \mathcal{X}_{\mathcal{A}}\right)$.

C. Evaluation of Translational and Rotational velocity

Translational and rotational velocity of the particle can be found by imposing force-free and torque-free conditions on the particle at $O\left(D e^{0}\right): \boldsymbol{F}_{H(0)}+\boldsymbol{F}_{M}=\mathbf{0}$ and $\boldsymbol{L}_{H(0)}+\boldsymbol{L}_{M}=\mathbf{0}$. Since the Maxwell force \boldsymbol{F}_{M} acts only along the z-axis $\left(\sim O\left(\kappa^{4}\right)\right)$ and the torque \boldsymbol{L}_{M} is zero, $U_{s x(0)}$ and $\Omega_{s y(0)}$ are found by hydrodynamic force and torque balance in x and y directions, respectively.

The force and torque on a spherical particle can be expressed through the coefficients of stokeslet and rotlet disturbances, respectively. Following Kim and Karrila [4, p. 88], we write the force-free and torque free condition as:

$$
\begin{equation*}
F_{H x(0)}=-4 \pi\left(A_{1}+A_{3}+\cdots\right) \text { and } L_{H y(0)}=-8 \pi\left(C_{1}+C_{3}+\cdots\right) \tag{32}
\end{equation*}
$$

The coefficients A_{1}, C_{1} and A_{3}, C_{3} are associated with the Lamb's solution of the first reflection of the velocity disturbance (eq. 3.36 of main text) and third reflection (30-31), respectively. Substitution of (30) and (31) into (32) results in a system of two equations for: $U_{s x}^{(0)}$ and $\Omega_{s y}^{(0)}$. Imposing the hydrodynamic force and torque to be zero and upon expanding the coefficients $A_{1}, B_{1}, \cdots H_{1}$, we obtain:

$$
\begin{gather*}
U_{s x(0)} \approx \alpha+\frac{\gamma}{3}-\frac{10 \kappa^{2} \beta W_{D}}{9\left(1+\kappa W_{A}\right)} \tag{33}\\
\Omega_{s y(0)} \approx \frac{\beta}{2}-\frac{5 \mathcal{X}_{D} \kappa^{3} \beta / 3}{\left(1+\kappa W_{A}\right)} \tag{34}
\end{gather*}
$$

Since the correction to particle velocity is $O\left(\kappa^{2}\right)$ and higher, we neglect the wall contribution to $U_{s x(0)}$ and $\Omega_{s y(0)}$.

D. Order of magnitude of the disturbance velocity field and test field

We substitute the leading order estimates derived in (33-34): $U_{s x(0)}=\alpha+\frac{\gamma}{3}$ and $\Omega_{s y(0)}=\beta / 2$ in the coefficients (eq.3.36 main text). We then substitute the coefficients in ${ }_{(1)} \boldsymbol{v}_{(0)}$ (eq.3.34main text) and ${ }_{(2)} \boldsymbol{v}_{(0)}$
(eq.24-26). The order of magnitude of reflections of the velocity fields is obtained as:

$$
\begin{gather*}
{ }_{(1)} \boldsymbol{v}_{(0)} \sim H a \zeta_{p} O\left(1 / r^{3}\right)+\beta O\left(1 / r^{2}\right)+\beta O\left(1 / r^{4}\right)+\gamma O\left(1 / r^{3}\right)+\gamma O\left(1 / r^{5}\right), \tag{35a}\\
{ }_{(2)} \tilde{\boldsymbol{v}}_{(0)} \sim \beta O\left(\kappa^{2}\right)+H a \zeta_{p} O\left(\kappa^{3}\right)+\cdots . \tag{35b}
\end{gather*}
$$

In the second reflection, the outer scale coordinate $\tilde{r} \sim O(1)$. Similarly, following the framework of Ho and Leal [5], the order of magnitude of test velocity field can be obtained

$$
\begin{gather*}
{ }_{(1)} \boldsymbol{u}^{t} \sim O(1 / r)+O\left(1 / r^{2}\right), \tag{36a}\\
{ }_{(2)} \tilde{\boldsymbol{u}}^{t} \sim O(\kappa)+O\left(\kappa^{3}\right)+\cdots . \tag{36b}
\end{gather*}
$$

IV. EVALUATION OF $O(\kappa)$ WALL CORRECTION TO MIGRATION VELOCITY

Here we provide the expression for first order correction to viscous drag (it appears in the denominator of eq-3.26 and eq-3.30 in the main text). The cross-stream migration of the particle generates stokeslet and source dipole disturbances. Eq. (30) showed that the leading order correction to drag arrives as κW_{A}. Thus, the relationship between non-dimensional cross-stream force and velocity is $F_{m i g}=6 \pi\left(1+\kappa W_{A}\right) U_{\text {mig }}$. Here,

$$
\begin{align*}
W_{A}=\int_{0}^{\infty} \frac{-3 e^{\lambda(-s)}}{16\left(-e^{\lambda}\left(\lambda^{2}+2\right)+e^{2 \lambda}+1\right)} & \left(-4 e^{\lambda s}-e^{\lambda+2 \lambda s}\left(\lambda^{2}(s-1)^{2}-2 \lambda(s-1)+2\right)\right. \\
+ & e^{2 \lambda s}\left(\lambda^{2} s^{2}-2 \lambda s+2\right)+e^{\lambda}\left(\lambda^{2}(s-1)^{2}+2 \lambda(s-1)+2\right) \\
& \left.-2 e^{\lambda+\lambda s}\left(\lambda^{2}+2 \lambda+\lambda^{3}(-(s-1)) s+2\right)-e^{2 \lambda}\left(\lambda^{2} s^{2}+2 \lambda s+2\right)\right) \mathrm{d} \lambda . \tag{37}
\end{align*}
$$

Fig.1(a) shows that W_{A} increases near the walls i.e. the migration velocity becomes slower as the particle approaches walls. Using a bispherical coordinate system for a particle approaching a wall, Brenner [2, p.246] reported a similar increase in viscous resistance. He provided an approximate expression for a single wall configuration: $\kappa W_{A} \approx \frac{9}{8 s} \kappa$ (originally derived by Hendrik Lorentz Theoret. Phys. 19071 23). Fig.1(b) shows a good agreement between our predictions and Brenner [2]. The slight mismatch near $s=0.5$ is due to the effect of second wall.

FIG. 1: (a) Variation of leading order viscous resistance to hydrodynamic drag. (b) Comparison with the single wall expression provided by Brenner [2].
[1] B. Ho and L. Leal, Journal of Fluid Mechanics 76, 783 (1976).
[2] H. Brenner, Chemical engineering science 16, 242 (1961).
[3] J. Happel and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media, vol. 1 (Springer Science \& Business Media, 2012).
[4] S. Kim and S. J. Karrila, Microhydrodynamics: principles and selected applications (Courier Corporation, 2013).
[5] B. Ho and L. Leal, Journal of fluid mechanics 65, 365 (1974).

[^0]: ${ }^{1}$ For $\kappa \ll 1$, the wall correction can be calculated using both method of reflections and the expression provided by Brenner [2, p.246] (originally derived by Hendrik Lorentz Theoret. Phys. 19071 23). In Section IV, we compare the wall correction, obtained from method of reflections, with [2].

