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Section A. Analytical solution procedure 

In this section, the solution methodology is discussed in detail. As evident from its definition, 

hydrodynamic dispersion coefficient depends strongly on the flow velocity which in turn is 

influenced by the pertinent electrokinetic and thermo-electric forcing. Here, the temperature 

distribution is discussed first which is followed by the potential distribution. Then these two are 

further employed in the momentum equation to obtain the velocity distribution.   

 

A1  Temperature distribution 

Unlike conventional streaming field-induced electrokinetic flow, here temperature (T) within the 

microchannel does not remain constant which is given by the energy equation 
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 (S1)  

where ρ, Cp and k are density, specific heat capacity and thermal conductivity of the fluid 

respectively. The left-hand side of equation (S1) represents the advective component of the 

thermal transport, whereas the first and second terms on the right side represent the axial and 

transverse conductive components. genQ  is the heat generation term due to the induced streaming 

field and vdQ  is the viscous dissipation term. genQ  can be expressed as genQ  ~ 2

xE  where 

xE x    is the induced streaming field and σ bulk electrical conductivity, 
2 22 Bz e D n k T   with z, e, D, n  and kB being the valence of ions, elementary electronic 

charge, average diffusivity of ions, bulk ionic number density and Boltzmann constant 

respectively. Besides, for a Newtonian fluid, the viscous dissipation term  vdQ  in equation (S1) 

can be written as  
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v  where  T  is the viscosity 

of the fluid. Here, we have neglected the variation of ρ and Cp with temperature while obtaining 
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the temperature distribution, whereas other thermo-physical properties like viscosity (μ), 

electrical permittivity (ε) and thermal conductivity (k) are considered to be temperature-

dependent. The following forms of temperature dependencies are assumed: 

 1expref refT T       ,  2expref refT T        and  3expref refk k T T     where 

the subscript "ref" denotes the reference value of the property evaluated at reference temperature 

Tref with 
i s being individual temperature sensitivities. The reason for assuming constant ρ and 

Cp is that the relative change of ρ and Cp with temperature is insignificant as compared to the 

change of other parameters (μ, ε, k) (Dietzel & Hardt 2017). For incompressible flow, v  

becomes zero and the expression of 
vdQ  gets simplified. Now, to obtain the temperature field, we 

have non-dimensionalized the energy equation (S1) by using the following variables 

, , ,C

c c ref B C

T Tu v l z e
u v

u u h T k T


 


   


 

where uc and TC = Tref are taken as characteristic scales of velocity and temperature with 

  2ref H CT T T    being the characteristic temperature difference. The dimensionless form of 

equation (S1) reads 
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 (S2) 

In equation (S2), β = h / l  is the aspect ratio of the microchannel, T c refPe u h   thermal Peclet 

number with thermal diffusivity ref ref pk C   and 
2 22 Bz e n k T   is the inverse of the 

electrical double layer (EDL) thickness. Similarly, temperature-dependent thermo-physical 

properties are also rewritten as  expref C       ,  expref C        and  

 expref kk k k C    respectively where 1 CC T  , 2 CC T  , 3k CC T  and CT T    

is the ratio of the imposed temperature difference to the reference temperature. Here, the values 

of l and h are taken as ~ 1 mm and 1 μm respectively thus making β ~ O(10
-3

), i.e. << 1. The 

characteristic velocity scale is chosen as the scale that is typically used for pressure-driven flow 

uc 
 ~ 0

3 ref

p h




. Assuming viscosity, ref  ~ 10

-3
 Pa. s. and pressure drop 

0p  ~ O(10
2
) Pa, uc 

turns out to be of the order of ~ 10
-4

 ms
-1

. For bulk ionic number density 206.023 10n    mol
-1

), 

the inverse of EDL thickness   becomes O(10
7
) m. For typical values of parameters ρ ~ 10

3
 kg 

m
-3

, Cp 
~ 4200 J kg

-1
 K

-1
, refk  ~ 0.6 W m

-1 
K

-1
, the value of thermal Peclet number  TPe  

becomes ~ O(10
-4

). Since TPe  is already multiplied by another small quantity β, thus, one can 

safely neglect the advective component in the energy equation (S2) and therefore, any alteration 

in the hydrodynamics due to the application of thermal gradient has no effect on the temperature 

distribution. Similarly, heat generation term involves a quantity  2 2 2 2 2

B c ref refDk T k T z e    

which, for refT  ~ O(10) K, ε ~ O(10
-10

) Fm
-1

, D ~ 10
-9

 m
2
s

-1
,   ~ O(10

7
) m

-1
 becomes O(10

-9
) 
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which is further multiplied by the quantity β
2 

where β << 1 and hence, the heat generation due to 

streaming field can be neglected. Also, most of the terms in viscous dissipation component 

involve β
2
and diminish for β << 1 . The remaining term is 

22

c

ref ref

u u

k T y

  
 

  
, which in our 

analysis comes out to be O(10
-8

) and remains insignificant in determining the temperature 

distribution. 

Case (a): Temperature gradient applied in the axial direction 

For axially applied temperature gradient, the simplified energy equation subjected to the 

aforesaid assumptions is given below 

 0k
x x

  
 

  
 (S3) 

where the dimensionless form of thermal conductivity is written as  expref kk k k C    

with kref being the reference thermal conductivity at Tref. We have obtained both closed-form and 

approximate analytical solution of the temperature distribution. For approximate analytical 

solution, the well-known asymptotic approach has been followed (typically employed to capture 

small perturbation to the system) where any variable φ can be expanded in the following way 

 2

0 1 2 ........          (S4) 

where CT T    is the thermal perturbation parameter used in the regular perturbation approach 

(S4) which implies the ratio of the imposed temperature difference of the domain to the cold side 

temperature (so, 0   represents the scenario of isothermal condition). The exact solution of 

equation (S3) subjected to axial temperature difference (i.e. at 0, 0x    and at 1, 2x   ) is 

given by 

   1 2ln k T T kC C C x C      (S5) 

where    2 2

1 21 , 1 1k kC C

T k TC e C C e      . Meanwhile, the governing equations and the 

solution for the asymptotic approach read as  

governing equations:      

   

   
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 
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



   
   

   

 (S6) 

and  solution:    2

0 1 2 2 kx C x x                             (S7) 

 The comparison between the exact solution and asymptotic solution for temperature 

distribution is presented in figure S1 where the lines show the results of the exact solution with 

symbols representing the predictions of asymptotic approach. With increasing Ck, enhanced 

temperature sensitivity of the fluid thermal conductivity results in a departure from the linear 

variation of temperature in the axial direction. At higher Ck (i.e. at Ck = 10), this distribution 

becomes parabolic in nature where a deviation between the asymptotic and exact solution can be 

noticed (as shown in the inset). However, as reported in the literature, the relative change of 

thermal conductivity with temperature in the typical electrolyte solution is 

    31 2.41 10k k T       K
-1

 (Dietzel & Hardt 2017) for which the value of Ck turns out to be 
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of the order of unity and hence, a linear temperature distribution can be assumed safely as an 

approximation. Throughout our analysis, we maintain Ck = 1 while presenting the results. 

 
 

  

A2  Potential distribution 

In contrast to the conventional electrokinetics problem, in presence of thermal gradient, ions no 

longer remain in equilibrium and one cannot consider Boltzmann distribution assumption while 

obtaining the potential distribution. Here, we need to find the ionic number concentration first 

which can be obtained by employing the classical Nernst-Planck (NP) equation. The electrolyte 

solution is considered to be dilute such that effects like ion-ion correlation or finite-size effect 

(also known as steric effect) can be neglected. Under steady-state and in absence of any chemical 

reaction, the NP equation for the transport of ionic species reads as 0iJ  i.e. the divergence 

of net ionic flux is zero. This ionic flux  iJ  consists of 4 components, namely, advection  in v , 

diffusion  i iD n , thermo-diffusion  i Tin D T , and electro-migration  *

i in u   components 

 *

i i i i i Ti i iJ n - D n n D T n       v  (S8) 

In equation (S8), iD  is the diffusivity, TiD  and *

i  are the thermophoretic and electrophoretic 

mobilities respectively with  *

i i i Be z D k T  . Using  0 , , ,i i B C i in n n ze k T z z z     

dimensionless form of 0iJ   is written below   

 2 2

1 1
i i i i i i i i i i

i i Ti i Ti

n n D n z n D n z n
Pe u v n S n S

x y x D x x x y D y y y

   
   

   

               
             

                   
(S9) 

Here, TiS  is the Soret coefficient of ions defined as  Ti Ti i CS D D T  and iPe  is the ionic Peclet 

number  i cPe u l D
 
which should not exceed unity for a diffusion-dominated problem like 

this and therefore, the advective term (i.e. left side of equation (S9)) becomes ~ O (β
2
). Since, β 

<< 1, this term and the first term on the right side can be neglected while finding in . Potential   

consists of two terms    ,x x y     where  x  is the induced streaming field with 

 ,x y  being the potential induced within EDL. Considering this, the distribution of in  

subjected to the symmetry condition at the channel centreline (i.e., at   = 0, 0in y   ) and 

FIGURE S1. Dimensionless temperature profile in the x-direction for different Ck. Lines show exact 

solutions while asymptotic solutions are shown by symbols. Inset shows zoomed view at Ck = 10. 
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number density being equal to the bulk number concentration in electroneutral region (
i in n

 
at 

0  ) results  

 exp
1

i in n


 


 
  

 
 (S10) 

where  B Cz e k T  . Since this shows an exponential dependence, it may seem like similar 

to the well-known Boltzmann distribution. However, the bulk ionic concentration  in  is not 

constant, instead, it is varying axially in the presence of the axial temperature gradient. To obtain 

this dependence, one need to equate the first term of the right side of equation (S9) with zero, so 

that  

 0
1

i i i
i Ti

n z n
n S

x x x

 


 

  
  

   
 (S11) 

Since electro-neutrality is prevalent in the bulk (i.e. 0x   ), equation (S11) gets simplified 

and we obtain the following expression for 
in

 

  expi Tavgn S      (S12) 

The ionic number concentration described by the equations (S10)-(S12) is further used in the 

Poisson equation to evaluate the potential distribution which reads as 

  e i i

i

e z n         . The dimensionless form of the Poisson equation is given below 

 
2

2

2
sinh

1
eff

y

 
 

 

 
  

  
 (S13) 

Contrary to the traditional electrokinetic studies, here the EDL thickness (i.e. the inverse of eff ) 

no longer remains constant and becomes a function of the axial co-ordinate 

 2 2

0 expeff TavgS      which yields    
2

2

02
sinh 1 exp TavgS

y


      


    
. For small 

values of surface potential and γ (i.e. small imposed temperature difference), we can use Debye-

Hückel linearization where  sinh 1      is approximated as  1   ; along with the 

exponential term being linearized as    
2

exp 1 2Tavg Tavg TavgS S S         . 
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 
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
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  

 (S14) 

In this context, it is worth mentioning that in the presence of a thermal gradient, the surface 

potential (or zeta-potential) no longer remains constant. Instead, it becomes a strong function of 

the imposed temperature difference by following a linear relationship. Some previous 

experimental studies have demonstrated this temperature-dependence of zeta potential where it 

not only depends on temperature but also other factors like surface reactions (Ghonge et al. 

2013; Ishido & Mizutani 1981; Reppert 2003; Revil et al. 2003). However, this surface reaction 

has a relatively weaker influence on altering the non-isothermal flow dynamics, as highlighted in 
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a recent study by Dietzel et al. (Dietzel & Hardt 2016). Consideration of this surface equilibrium 

and other associated reaction kinetics will unnecessarily complicate the present theoretical 

framework and hence, the only linear dependence of zeta-potential with temperature is 

considered, i.e. at 1y   , 1 C          
with Cζ being the temperature sensitivity of 

zeta potential. Equation (S14) subjected to the constant zeta potential boundary condition (i.e. Cζ 

= 0) results in the following two equations for the potential distribution 

 
 
 

0

0

0

cosh

cosh

y



  (S15) 

    
      

 
0 0 0 0

1 1 0 2 0

0

exp 4 sinh 2cosh
exp exp

8cosh

effC y y y y
f y f y

    
  



  
    (S16) 

where 
 

 

 
00

1

0 0

tanh1

8 cosh 4 cosh

eff effC C
f

  

 
  , 

    
   

0 0 0 0

2

0 0

sinh 2 2 2 cosh 21

8 cosh sinh 2

effC
f

    

 

 


 

and 

   01eff TavgC C S     . Now, considering the temperature-dependence of zeta-potential as 

boundary condition, the modified form of O(γ) potential distribution (i.e. 
1 ) is given by 

   
      

 
0 0 0 0

1 3 0 4 0

0

exp 4 sinh 2cosh
exp exp

8 cosh

effC y y y y
f y f y

    
  



  
   

    

(S17) 

where 
 

0

3 1

02cosh

C
f f




   and 

 
0

4 2

02cosh

C
f f




  . 

 Reported experimental results of the temperature dependence of zeta potential (Reppert 

2003) is depicted in figure S2 (i) which clearly shows that zeta potential (ζ) is indeed strongly 

dependent on temperature by following a linear relationship. These data are fitted in the form of 

 ref refm T T     (this is the same form of zeta potential variation with temperature which we 

present as 1 C      ) and this approximates quite well with the experimental data. As can 

be seen from this figure, depending on electrolyte concentration, this sensitivity with temperature 

is increased almost twice as the slope (m) of the fitted line increases from 0.0112 to 0.0214. So, 

in the dimensionless form, the value of Cζ turns out to be varying from ~ 3 to 6 (approximately). 

Accordingly, in our analysis, we have chosen Cζ to lie between 0 and 4 while presenting the 

results, with Cζ = 0 representing the case of constant zeta potential. Figure S2 (ii) shows the 

potential distribution in the transverse direction where the inset clearly shows the effect of Cζ on 

the potential distribution. The effect of Cζ is noticeable only in the close vicinity of channel walls 

(where the EDL is located) while remains ineffective in the electro-neutral region. As Cζ is 

increased, more is the ionic redistribution within EDL and the magnitude of zeta potential may 

increase up to twice (at γ = 0.1 as shown in the inset) as observed in figure S2 (iii) for Cζ  = 4. 

 Another key factor in altering the potential distribution is Cε representing the change in 

electrical permittivity with temperature. Increasing Cε from 1 to 10 indicates a significant 

reduction in electrical permittivity with temperature whose effect is reflected in the charge 

distribution via the permittivity-induced component  2 2

0 0C y    . As observed in figure S2 

(iv), increasing Cε creates a deviation in potential profile close to the channel walls while 
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remains unaffected in the bulk. 

(i)

(iii) (iv)

(ii)

 
 

 

 

A3  Velocity distribution 

Because of the applied temperature gradient (ΔT), a thermo-electric field is induced within the 

microchannel by virtue of the difference in Soret coefficients between cations and anions. 

Besides, another form of thermoelectricity can be induced due to the difference in ionic 

diffusivities of the ions even if their Soret coefficients remain the same. Also, since the thermo-

physical properties of the fluid are strongly dependent on temperature, there will be drastic 

alteration in the hydrodynamics in the presence of ΔT. For example, the variation of electrical 

permittivity with temperature is manifested through the contribution of dielectrophoretic body 

force with accompanying axial pressure gradient thereby strongly influencing the advection 

motion of the fluid. For steady, incompressible flow, the velocity distribution for a Newtonian 

fluid is described by continuity equation 0 v  along with the following momentum equation 

  0
T

EK DEPp F F         
 

v v  (S18) 

The left-hand side of equation (S18) is zero because of negligible inertial effect consideration 

which occurs only when the Reynolds number (Re) associated with flow is very less compared to 

FIGURE S2. (i) Reported experimental results of zeta potential variation with temperature 

(Reppert 2003), (ii) potential distribution in the y-direction for both constant and temperature-

dependent zeta potential, variation of the same for (iii) different Cζ  and for (iv) different Cε. 
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unity, i.e. Re << 1. Here, p is the hydrodynamic pressure,  
T

    
 

v v  viscous stress, 

EK eF      electrokinetic force, and   
2

1 2DEPF       dielectrophoretic force 

respectively. In the momentum equation, the effect of electrostriction force (i.e. the variation of 

electrical permittivity with fluid density) is not considered because of the assumption of the 

constant density of the fluid. Evaluating 
EKF  and 

DEPF
 
from the previously-obtained potential 

distribution, substituting those in momentum equation and employing β << 1, we get    

           

22 2

2 2 2

2

2 2

1
component : 0

2

component : 0

eff

eff

p u
x C

x y y x y x

p
y

y y y



    
 



  



       
       

         

  

    
              

(S19) 

In equation (S19), λ represents the ratio of induced velocity due to osmotic pressure to the 

characteristic flow velocity 2 B c ref chn k T u   .  

 

First, we solve the pressure distribution from the y-component of the momentum equation. Here, 

the axial pressure-gradient consists of two terms, one is the externally imposed pressure gradient 

while the other part is induced in non-isothermal condition. If one looks into the x-component of 

the momentum equation, then one can notice the term eff  i.e. the effective thickness of the 

inverse of the electrical double layer (EDL) which takes the form  0 expeff TavgS     . 

Since temperature (θ) is varying in the axial direction, eff  becomes a function of the axial 

coordinate. Also, the dimensionless forms of the physical properties like dynamic viscosity    

and electrical permittivity    are function of the temperature distribution as 

 expref C      
 
and  expref C       .  Considering these aspects one can 

understand that the resulting flow dynamics in the present analysis is two-dimensional in nature 

and fundamentally different from that typically occurring in classical streaming field-induced 

unidirectional flow. Using the expressions of eff  and 
p

x




 (pressure gradient), the modified form 

of the x-component of the momentum equation becomes    

  
   

22 2 2 2

0

22 2 2

0

1
exp

2 2 1 2 1
Tavg x

p nu
S E

y x y x y x n x
         

    
    





         
      

           

(S20) 

where xE x   . Equation (S20) is now solved by following the aforesaid asymptotic 

approach where the governing equations at different orders of perturbations are as follows 
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 

 

  
 

2 2

0 0 0
02 2 2

0

2

0
0 0 1222

20 01
0 022 2 2 2

0 0 01
02

O 1 : ,

O : 1
21

2

x

x Tavg x

Tavg

x

u p
E

y x y

E S C E
yuu

C S
y y x

E C
y x y














 
  

  

  
  

   
     

       
      
    
       

 (S21)  

To obtain the flow field, equation (S21) is subjected to no-slip condition at the surface 

 = 0 at 1u y   and symmetry condition  0 at 0u y y     at the channel centreline. Using 

this, the velocity distributions are given in the following two equations 

  
 
 

020
0 02

0 0

cosh1
1 1

2 cosh
x

yp
u y E

x



 

 
    

  
 (S22) 

 

 
 

 
 
 

   
 

 
 

     

22
0 0 5 0 1 6 20

1 2 2 0 3 1 0 12 2

0 0 0 0 0

8 117
4 0 0 0 9 3 10 4 1 22 2

0 0

cosh cosh

2 cosh cosh cosh

exp exp

x x x

x

y y F y F yp y
u E E E

x

E y y F y F y c y c

    
   

    

 
    

 


    



 
       

 

(S23) 

Equation (S22) represents the perturbation-free flow field which is the well-known expression 

for combined pressure-driven and streaming field-induced electrokinetic flow while equation 

(S23) indicates the contribution of the thermal perturbation to the flow field. The coefficients of 

the velocity distribution described by equation (S23) are given below 

 

   

0 0 02 2
1 4 12 2 4 12 4 18 0 3 1 0 1 5 13 6 14

0 0 0

23 0 0
1 0 2 0 3 4 3 5 6 7 1 02
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2 19
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, ,
2

, , , , , 1 , ,
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3 1
, , , ,

4 2 8

x x
x x
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E p E
c c E E

x

S C C C S f
x x

f

  

  
            

  

   
          




        

 
           

  

 
        

 

     

     

         
  

20 21
12 7 8 11 13 142 2 2

23 0 23

2

0 2 29 2322 11
15 16 17 0 18 15 16 17 19 20 23 02 2 2

0 0 0 23

2 2 2

0 02 2

21 23 0 22 7 0 8 0 23 0 1

0

, , ,
4 4

, , exp , , , ,

cosh
, exp exp , cosh , ,

4

effC

y y
F y

F



 
    

  

  
           

   

 
         



    

         


        

     
 

 
   0 0 0 02

2 1 0 3 42 3

0 0

cosh sinh 2cosh1
, ,

2

y y y y
y F y y F y F y

   


 


   

Still, the completion of the flow field requires the knowledge of the induced streaming potential 

for which the electroneutrality condition (i.e. vanishing net current condition) is invoked, i.e. 

net streaming advection 0I I I   . The governing equation of electroneutrality employed for streaming 

potential evaluation is given below  
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  

 

 
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2 1 1

1 1
cosh sinh 1 1 exp
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cosh sinh sinh
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D
x D T

D

i

T

C
E dy C S dy

x

C
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x

S
x

     
    

       

     
 

      



 

 



         
              

            

       
        
          





 

 

 
1

1
1 sinh cosh 0

1 1
D

n
C dy

n
  

  
   

     
        

       


(S24) 

Equation (S24) is then expanded similarly (as described earlier in the asymptotic approach)  

                   
1 1 1 1

2

0 0 0 0 0 0 0
1 1 1 1

1
O 1 : 0

2
x x x iE dy E dy E dy Pe u dy   

   
                        (S25) 

and   

    
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        
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  


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
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


  

(S26) 

 

Now, we get the final expression of the streaming fields at different degree of perturbations 

  
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 
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 


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
       

        
        

(S27) 

                         and       0
1 48 47 0 45 46x i xE Pe E

x


   

 
    

 
 (S28) 

The coefficients of equation (S28) is reported in Section F1 of the supplementary material. Here, 

it is necessary to mention the two parameters involved in the final expression of the streaming 

potential described by equations (S27)-(S28), χ and CD. χ represents the diffusivity difference 

between the co-ions and counter-ions    D D D D      
 

while CD represents the 

sensitivity of diffusivity of ions with temperature (here diffusivity D is assumed to be obeying 

the following relationship  41ref refD D T T     , i.e.  1ref DD D D C      (D. R. Lide 

2005; Ghonge et al. 2013)). While results for varying χ are reported in the main paper, 

corresponding results for varying CD are presented in Section B of the supplementary material 

for the sake of brevity.  

 Now, to show the two-dimensional nature of the flow, we have plotted the distribution of 

the u component in the transverse direction  y  at different axial locations  x  as shown in 

figure S3. The dotted line (blue-coloured), solid line (green-coloured) and dash-dot (red-

coloured) line correspond to x  = 0, x  = 0.5 and x  = 1 respectively. Velocity profiles are 
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evaluated at 0p

x





 = 0.01 while the inset shows the variation of the same at a lower strength of 

pressure gradient, i.e. 0p

x





 = 0.001. With increasing the value of x , the magnitude of the flow 

velocity starts to increase with the maximum increment occurred at the channel centreline (i.e. at 

y  = 0). This increment in the flow velocity gets strengthened with increasing strength of 

pressure gradient. As we increase the pressure gradient 10 folds from 0p

x





 = 0.001 to 0p

x





 = 

0.01, the maximum enhancement of u  increases from ~ 1.06 times to ~ 1.16 times thereby 

indicating stronger axial dependence of flow. 

 
 

 

  

Equations (S22) and (S23) along with the knowledge of O(1) and O(γ) streaming potentials 0xE  

and 1xE  completes the velocity distribution 
0 1u u u  . Once the velocity field is known, one 

can differentiate it with respect to the axial coordinate  x  which, according to the 

incompressibility constraint, becomes 

 
u v

x y

 
 

 
 (S29) 

Now, one can obtain the transverse velocity component  v  by integrating the expression of 
u

x




 

in the transverse direction  y . The expression of the v  component is given in the following 
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      
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
 


   (S30) 

FIGURE S3. Velocity distribution u  in the transverse direction  y . Plots are shown at different 

axial locations  x  for 0p

x





 = 0.01. Inset shows the variation of the same for 0p

x





 = 0.001.  
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where 
5C  is the integration constant which can be obtained by invoking the impermeability 

conditions at the channel walls (i.e. v  = 0 at y  = ±1). The other coefficients are listed below  
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 The variation of the transverse velocity component  v  in the y-direction is shown in 

figure S4. In figure S4(a), the effect of the thermal perturbation parameter γ on v  is shown for 

three different values of γ. As one increases the value of γ, more is the thermal perturbation to the 

flow field, more is the alteration in the thickness of the electrical double layer (EDL), more is the 

deviation of the ionic number concentration from its equilibrium distribution thus leads to 

establishing stronger axial dependence of primary flow component  u . This results in more 

generation of the secondary component to maintain the flow continuity condition as reflected in 

figure S4(a). The maximum increment (at y  = 0) of the velocity magnitude is ~ 4 times as γ is 

changing from 0.025 to 0.1 (i.e. linear dependence with γ as the asymptotic solution is correct up 

to O(γ)). Similarly, at a fixed γ and pressure gradient, increasing Cμ indicates the lessening of the 

viscous resistance in the flow which leads to more generation of the v  component. The  

 
 

FIGURE S4. Velocity distribution v  in the transverse direction  y . Plots are shown for 

different values of (a) γ and (b) Cμ respectively (evaluated at x  = 1, 0p

x





 = 0.01).  

(a) (b) 
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enhancement of the velocity magnitude is ~ 3.13 times as Cμ is increased from 1 to 3 (shown in 

figure S4(b)). Once the velocity field is known, we can obtain the volumetric flow rate  Q  

through the microchannel by integrating the flow velocity cross-sectionally  

  
1 1

0 1 0 1
1 1

Q Q Q u dy u u dy 
 

       (S31) 

In the traditional pressure-driven flow of electrolyte solution, the induced streaming field creates 

a flow in the reverse direction, thus leading to a suppression of the net volumetric flow rate of 

the pressure-driven flow. Now, in the presence of thermal gradient, net throughput through the 

channel depends on whether the induced thermo-electric streaming field assists or opposes the 

pressure-gradient induced streaming field. Here, we have presented some results of the flow rate 

ratio (Qr) which is defined as the ratio of the net flow due to combined action of external 

pressure gradient and temperature gradient to the throughput because of sole action of the 

pressure gradient. For solely temperature gradient driven flow, as Δ  T 
is increasing, the reduction 

in net streaming potential results in a significant enhancement in flow rate in absence of pressure 

gradient, .i.e. increment up to ~ 2.1 times can be observed (as shown in Figure S5 (i)). This rate 

gets attenuated in the presence of a pressure gradient (at 0 0.01p x   ). One interesting thing 

to notice that there is a cross-over between the graphs for 0 0p x    and 0 0.01p x  
 
at 

Δ  T = 0.66. Below this critical Δ  T, Qr is higher in presence of pressure gradient and beyond this, 

reverse trend has been observed. In solely ΔT driven flow, at lower Δ  T, axial separation between 

ions is not that higher thus creating lower reduction of streaming potential whereas at higher Δ  T, 

this occurs relatively faster thus giving rise to more augmnetation in flow rate as compared to the 

case of 0 0.01p x   . Increasing Δ  T 
has almost vanishing effect in higher strength of 

pressure gradient. As shown in figure S5 (i) slight increase in flow rate ratio is seen for 

0 0.1p x    while for 
0 1p x   , the profile of Qr remains constant at 1.2. 

 The variation of Qr with χ is shown in figure S5 (ii). Decreasing χ results in lowering 

the induced streaming potential because of the enhanced migration of co-ions in the upstream 

section. However, the dependence of Qr on χ is very weak as a slight increment in the flow rate 

ratio is observed when χ is decreased from 0 to -0.2. The magnitude of the flow rate ratio (Qr) 

becomes higher (from 1 to ~ 1.55) as one introduces a pressure gradient  0 0.01p x   . Now, 

increasing the strength of pressure gradient results in a reduction of the magnitude of Qr with χ 

becoming increasingly insignificant (Qr vs. χ  plot remains constant). 

 Now, the flow rate ratio (Qr) dependence on Cμ is depicted in figure S5 (iii) where 

increasing Cμ 
denotes a reduction in the fluid viscosity with temperature. The subsequent 

lowering in the viscous resistance of flow results in significant augmentation of the volumetric 

flow rate. However, as described earlier in the variation of streaming potential ratio (Er), 

increasing Cμ 
also ensures faster migration of the ions caused by the imposed pressure gradient 

or the induced concentration gradient which also generates more electrokinetic flow in the 

reverse direction. Therefore, the net throughput depends on the rate of lessening of viscous 

resistance as well as the enhanced induced streaming field. For lower strength of pressure 

gradient ( 0 0.01p x   ), an enhancement in the flow rate ratio (Qr) 
up to ~ 3.35 times is 

observed as Cμ 
is increased from 1 to 10. Increasing the strength of the pressure gradient lowers 

the magnitude of the net flow rate with the dependence on Cμ remaining qualitatively similar. 
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 The alteration in the flow rate ratio (Qr) 
with increasing Cε is highlighted in figure S5 

(iv) where the reduction in the streaming potential owing to the temperature-sensitivity of 

electrical permittivity causes significant enhancement (~ 2.87 times) in the net throughput for 

purely thermally driven flow. However, the impact of Cε 
on Qr 

becomes less in the presence of 

pressure gradient and interestingly, a cross-over between plots of 
0 0p x    and 

0 0.1p x    has been observed at Cε = 5. Higher the strength of pressure gradient, Cε becomes 

less important and the profile of Qr 
remains flat at a constant value of ~ 1.21. 

(i)

(ii)

(iii) (iv)

(v)
(vi)

 
 

 FIGURE S5. Flow rate ratio with (i) Δ  T, (ii) χ, (iii) Cμ, (iv) Cε, (v) γ and (vi) 0  (at    = 1). 

 



 
 

15 
 

 The dependence of Qr 
on γ is shown in figure S5 (v) where the higher value of γ implies 

a higher degree of thermal perturbation which is more pronounced at a lower strength of pressure 

gradient  0 0.01p x   . This influence of γ gets weakened with increasing pressure gradient. 

As clear from figure S5 (v), the slope of Qr 
vs. γ becomes almost half of the previous case as the 

strength of pressure gradient increases 10 times from 
0 0.01p x    to 

0 0.1p x   . At 

higher strength, the graphs are identical with a zoomed view of a portion (inset I of figure S5 (v)) 

indicating a negligible difference in Qr 
with γ. For completeness, inset II of figure S5 (v) shows 

the variation of dimensionless flow rate for purely ΔT driven flow which also shows linear 

dependence with increasing thermal perturbation.  

 Figure S5c (vi) shows the variation of the flow rate ratio (Qr) with decreasing channel 

confinement (i.e. increasing 
0 ). For purely thermally driven flow (i.e. 

0 0p x   ), Qr 
decreases sharply from its reference value and approaches towards zero as one increases 

0  from 

1 to 10. At higher 
0 , the net flow through the channel gets completely arrested. This also 

highlights the importance of channel confinement on the hydrodynamics of purely thermally 

driven flow. As the pressure gradient is introduced  0 0.1p x   , the reduction in Qr 
becomes 

so rapid that it falls from 4 times to approach a constant value of ~ 1.2 beyond 
0 4.5  . Now, 

increasing the strength of the pressure gradient makes it predominant to dictate the flow physics. 

Therefore, the rate of reduction of Qr 
with 

0  gets dampened and approaches to the same 

constant value earlier (at 
0 3.5  ) as compared to the case of 

0 0.1p x   . Also, the plots for 

0 1p x    and 0 10p x    becomes identical at higher 
0  indicating the vanishing effect of 

0  on the flow field.  

Similarly, the dispersion coefficient can also be expressed as  

 0 1effD D D   (S32) 

where the estimation of 1D  (i.e. dispersion coefficient at O(γ)) involves the knowledge of O(γ) 

flow velocity 1u . The expressions of the flow field and streaming potential for the exact solution 

in case of the axial temperature gradient is too large to be presented in the supplementary 

material. The MATLAB script file containing the expressions for the exact solution can be made 

available upon request. 

 

 In this context, it is worth mentioning that, for a two-dimensional flow, in addition to the 

dispersion coefficient, there is a contribution to the mean advection speed of the solute plug 

which depends on both longitudinal  u  as well as transverse  v  components of flow (Chu et 

al. 2019). Since our definition of dispersion coefficient requires the knowledge of the average 

flow velocity, we mainly focus on the alterations in the velocity distribution utilizing the 

pertinent variables involved. However, if one conducts the multiple-scale perturbation analysis, 

one can not only evaluate the dispersion coefficient, but also the concentration distribution of the 

species. As employed by Chu et al. and other researchers (Chu et al. 2019; Ng 2006), the 

transport of species can be described by the following advection-diffusion equation (Chu et al. 

2019) 
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2 2

2 2

C C C C C
u v D

t x y x y

     
    

     
 (S33) 

where D is the molecular diffusivity. In the multiple-scale perturbation analysis, the aspect ratio 

of the microchannel β = h/l (which is very small as compared to unity, i.e. β << 1) can be chosen 

as the perturbation parameter and therefore, the three times scales, i.e. (i) diffusion time scale 

across the channel height, (ii) advection time scale across the channel length and (iii) diffusion 

time scale across the channel length takes the following form (Chu et al. 2019) 

0t t ,    
1t t   and  2

2t t  

Now choosing a reference concentration scale Cref, length scales l and h in the axial and 

transverse directions and time scale 
2

c

h
t

D
  one can non-dimensionalize the advection-diffusion 

equation (S33) (Chu et al. 2019) as 

                                              
2 2

2

2 2

C C C C C
Pe u v

t x y x y
 

     
    

     
                 (S34) 

where Pe is the Peclet number, 
cu h

Pe
D

 . Now, following Chu et al., we expand the temporal 

derivative in the following manner 2

0 1 2t t t t
 

   
  

   
 and the concentration distribution 

is expressed as (Chu et al. 2019) 

        2

0 1 2 1 0 1 2 2 0 1 2, , , , , , , , , , , , ,C x y t C x y t t C x y t t t C x y t t t     (S35) 

where 0C , 1C  and 2C  are the leading order (i.e. O(1)), O(β) and O(β
2
) concentration 

distributions respectively. This concentration field is subjected to the impermeability boundary 

conditions at the channel walls (i.e. 
C

y




 = 0 at y  = ±1). Similar to Chu et al., here also, the 

leading order concentration profile ( 0C ) indicates that it is independent of the transverse 

coordinate ( y ) and function of x , 1t  and 2t  only. The governing equation of the first order 

concentration field 1C  after time-averaging followed by the cross-sectional averaging becomes 

(Chu et al. 2019) 

  
2

01 1

2

0

avg

CC C
Pe u u

t x y

 
  

  
 (S36) 

The solution of equation (S36) can be chosen in the form   0
1 ,

C
C Pe A x y

x





. Substituting this 

form of 1C  on both sides of equation (36) and equating the coefficients of 0C

x




 on both sides one 

can find the following governing equation for the function  ,A x y  (Chu et al. 2019) 

 
2

2 avg

A
u u

y


 


 (S37) 
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subjected to the boundary condition 
A

y




 = 0 at y  = ±1.  In a similar way, one can obtain the 

governing equation for O(β
2
) concentration field. Now, combining these three concentration 

fields, using 2

0 1 2t t t t
 

   
  

   
, the time-averaged and cross-sectionally averaged 

transport equation becomes (Chu et al. 2019) 

    
2

2 2 20 0 0

2
1avg s eff

C C C
Pe u Pe K Pe D

t x x
  

  
       

                   (S38) 

where 
sK  is the correction to the mean advection speed of the solute plug. The expression of 

sK  

 is given by s x yK u A v A   where the operator  is the average across the channel cross-

section, Ax and Ay are the derivates of the function A with respect to x and y respectively.  

 
 

 

 

Since the expression of function A is too large, it is presented in Section F1 of the document for 

the sake of conciseness. Now, it is important to mention that the velocity field u  is a 

combination of two profiles 0u  and 1u , i.e. 0 1u u u   while the v  component is given by 

1v v . Accordingly, the correction factor sK  can be divided into two parts 0sK  and 1sK  i.e. 

0 1s s sK K K   indicating the contributions of the two velocity distributions 0u  and 1u  

respectively. Therefore, the ratio 1

0

s

s

K

K
 signifies the relative contribution of the thermally 

perturbed flow field  1u  to the mean advection speed correction factor. The variation of this 

ratio is plotted in figure S6 as a function of the thermal perturbation parameter γ. Higher the 

value of γ, more is the disturbance in the uniformity in the flow field, stronger is the axial 

dependence of the flow field, more is the generation of the v  component thus leads to higher 

correction to the mean advection speed. Since our analysis is correct up to O(γ), we have 

observed linear dependence of the ratio 1

0

s

s

K

K
 with γ. As already discussed, increasing Cμ favors 

FIGURE S6. Variation of the ratio 1

0

s

s

K

K
 as a function of the thermal perturbation 

parameter γ. Results are shown for three different values of Cμ. 
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more secondary flow generation resulting in a significant increment in the correction factor as 

observed in figure S6.  

Case (b): Temperature gradient applied in the transverse direction 

For temperature difference applied in the transverse direction, considering all previously-

mentioned assumptions and simplifications (for the case of the axially applied thermal gradient), 

the governing equation of the temperature distribution reads as 

 0k
y y

  
 

  
 (S39) 

and the corresponding temperature profile (asymptotic solution) is given by 

    2

0 1 1 1
2

kC
y y


          (S40) 

Now, the governing equation for the transport of ionic species reads as  

 
*

0
1

i i i
Ti i

n n zD
S n

y D y y y

 


 

     
    

       
 (S41) 

which results in the following distribution of the ionic number concentration within the EDL 

 
   

2

2
2

1 1
Tn n S dy

y

  
  

   
 


    

  
  (S42) 

This is now used in the Poisson equation to obtain the potential distribution. The governing 

equations for the potential distribution are as follows 
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(S43) 

For potential distribution, unlike the case of axial temperature gradient, no closed-form solution 

is possible. So, one needs to either employ asymptotic approach (approximate solution) or can 

solve it numerically. The solutions of O(1) and O(γ) potential distributions are written as follows  
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(S44) 

The coefficients of equation (S44) are reported in Section F2 of the supplementary material.  
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 Comparing the potential distribution profiles for longitudinal and transverse thermal 

gradients one can understand that the basic difference is the introduction of asymmetry through 

the temperature distribution (figure S7) which has its immediate effect on the potential 

distribution within the EDL. With increasing Cζ, the magnitude of surface potential gets 

amplified significantly in the hot region while remaining unaffected in the cold region thus 

creating more asymmetry in the y-direction. This further influences the fluid advective motion 

through electrokinetic forcing thereby altering strongly the velocity distribution. Knowing the 

potential distribution, the flow field can now be obtained from the following governing equations 

  
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 (S45) 

and        
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 (S46) 

The solution of these two equations subjected to no-slip boundary condition at the surfaces yields  
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(S48) 

The coefficients of the velocity distribution described by equation (S48) are given below 

FIGURE S7. Potential distribution in the y-direction (at γ = 0.1) for transverse temperature 

gradient. Inset shows the zoomed view towards the top wall (i.e. close to   = 1). 
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Now, the induced streaming field ( x) can be evaluated by using the electroneutrality condition 

similarly as mentioned in the case of axial temperature gradient  

      
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The final forms of the induced streaming fields ( xE ) for O(1) and O(γ) are written below  
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and        1 32 30 0 31x xE E                                  (S52) 

with the coefficients of equation (S52) shown in Section F2 of the supplementary material.  

A.4 Fluid rheology 

Now, we focus on the alteration of hydrodynamics and the associated streaming field caused by 

the inclusion of rheological aspects of fluid. Towards this, the constitutive form of viscoelastic 

fluid has been chosen for which we have taken into account the simplified Phan-Thien Tanner 

(sPTT) model, typically employed to model the rheological characteristics of viscoelastic fluids. 

Here, the basic difference with Newtonian fluid lies in the expressions of the stress tensors 

(Afonso et al. 2009; Arcos et al. 2018; Bautista et al. 2013) 
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 (S53) 

One important thing to note here that, in presence of temperature gradient, not only fluid 

viscosity but also fluid relaxation time start to become temperature-dependent and interestingly, 

the extent of viscoelasticity of fluid is governed by these two parameters - viscosity and 
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relaxation time. In equation (S53), F is the stress coefficient function, which for the linear PTT 

model, takes the form  1 eff xx yy effF         where δ represents the extensibility of 

viscoelastic fluid (here δ is chosen to be equal to unity). Here, eff  and eff  are viscosity and 

relaxation time of the fluid which are assumed to be function of temperature as 

 1expeff ref refT T        and  4expeff ref refT T        respectively. The 

dimensionless form of fluid relaxation time is  expeff ref C        with C  being the 

sensitivity of relaxation time with temperature. Unlike the Newtonian fluid, evaluation of the 

leading order streaming potential  0xE  in case of a viscoelastic fluid involves a cubic equation 

in the form of 3 2

0 0 0 0x x xAE B E C E D     (the expressions for A, B, C, and D can be found in 

Section F3 of the supplementary material) in which the real root has been chosen for further 

calculations while the other two roots are complex conjugate to each other and thus discarded.  

 One important non-dimensional number associated with the flow of viscoelastic fluids is 

Deborah number (De) which determines the degree of viscoelasticity of a fluid defined as 

ref ref cDe u  . Keeping other parameters ( ref ,
cu ) fixed, the value of Deborah number (De) 

can lie in between 10
-1

 and 1 depending on fluid relaxation time (λref) (which may vary due to 

factors like polymer concentration, polymer molecular weight, etc.). Accordingly, we have 

chosen De in our analysis to vary in between 0 to 1 (with De = 0 representing the results of a 

Newtonian fluid) while obtaining the results. Meanwhile, the stress-tensors in case of 

viscoelastic fluid are made dimensionless as follows  

, ,
yy xyxx
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ref c ref c ref c

h hh

u u u
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  
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For temperature gradient applied in the x-direction, the momentum equations for different degree 

of perturbations are given in the following  
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where the stress tensors 
0xy  and 

1xy  are related to the velocity gradients 0u

y


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For the case of transverse thermal gradient, the governing momentum equations can be written as  
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and    
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One interesting thing to note that, for the special case of Cμ = Cλ, the expressions relating the 

stress tensor and velocity gradient get simplified resulting in a reduction of non-linearity in the 

constitutive equation. This also indicates the attenuation of the degree of viscoelasticity of the 

fluid. Since the stress-tensors in the constitutive form of a viscoelastic fluid are inherently non-

linear in nature, the final form of the velocity profiles (for both longitudinal and transverse 

temperature gradient) are quite large and thus not included in the supplementary material. The 

MATLAB script files containing the expressions can be made available upon request. 

 

Section B. Results considering the temperature dependence of diffusivity of ions

 

 The dependence of the diffusivity of ions with temperature can be written as 

 1ref DD D D C      (Ghonge et al. 2013) with CD representing its temperature-sensitivity. 

Since, temperature increases gradually (following a linear relationship) in the x-direction for 

axially applied thermal gradient, the diffusivity of ions also increases in a similar way. If there is  

(i)

(ii) (iii)

 
 

 

 

FIGURE S8. The effect of temperature sensitivity of diffusion coefficient (CD) on (i) streaming 

potential ratio (Er), (ii) flow rate ratio (Qr) and dispersion coefficient ratio (  eff) , respectively. 
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a difference between the diffusivity of co-ions and counter-ions, ions having higher diffusivity 

migrates much faster than the other thus creating an axial separation between them which results 

in an augmentation of the streaming potential. Now, the enhanced diffusivity in the presence of 

thermal gradient creates more migration of both cations and anions thus creating a hindrance in 

the axial separation between them. This results in a significant reduction in the net streaming 

potential. As shown in figure S8 (i), for lower thermal perturbation (γ = 0.05), streaming 

potential ratio (Er) decreases from ~ 1.1 times to ~ 0.7 times as CD  is increased from 0 to 5 

(evaluated at 
0  = 1). At higher γ, the effect of thermo-electric perturbation to the flow field 

becomes more prominent and accordingly, the dependence of Er on CD becomes stronger (Er 

decreases from ~ 1.3 to ~ 0.4 with increasing CD). Also, a cross-over between the graphs of γ = 

0.05 and γ = 0.1 can be seen at CD = 1.6. For higher 
0 , similar reduction of Er with increasing 

CD (inset of figure S8 (i)) can be noticed with cross-over occurring earlier at CD = 1. The reduced 

volumetric suppression due to lower induced streaming field results in an increment in the flow 

rate ratio (Qr) from 1.12 to 1.17 as CD is changed from 0 to 5. At higher thermal perturbation (at 

γ = 0.1), more is the thermally-induced migration of both ions resulting in further lessening of 

streaming potential. Therefore, as CD is increased from 0 to 5, the flow rate ratio (Qr) is 

enhanced from 1.24 to 1.35 (figure S8 (ii)). For dispersion coefficient ratio (  eff), trends at lower 

γ (γ = 0.05) are qualitatively similar to the variations of flow rate ratio (Qr) with reduced slopes 

indicating weaker dependence with CD (figure S8 (iii)). However, at higher γ (γ = 0.1),   eff 

follows a non-linear dependence with CD because of amplified sensitivity of diffusivity with 

temperature resulting in a significant increment on the net flow velocity. 

Section C1. The reasoning behind the choice of the ranges of the dimensionless parameters

 

 While expressing the results, we have used the following ranges of the dimensionless 

parameters:  0 ≤ γ (thermal perturbation parameter) ≤ 0.1, 10
-1

 ≤ Cμ (sensitivity coefficient of 

viscosity) ≤ 10, 10
-1

 ≤ Cε (sensitivity coefficient of electrical permittivity) ≤ 10, Ck (sensitivity 

coefficient of thermal conductivity) = 1, -0.3 ≤ χ (diffusivity difference between ions) ≤ 0, 0 ≤ 

Δ  T  (difference in Soret coefficients between ions) ≤ 1, 1 ≤ 
0  (inverse of the EDL thickness) ≤ 

10, 0 ≤ 
0p x   (strength of imposed pressure gradient) ≤ 10, 0 ≤ CD (sensitivity coefficient of 

diffusivity of ions) ≤ 5, 0 ≤ Cζ  (sensitivity coefficient of zeta potential) ≤ 4 and 0 ≤ De (Deborah 

number) ≤ 1. The reason behind choosing these ranges along with the corresponding dimensional 

values of these parameters are discussed in the following: 

 In our study, the parameter γ is used to take into account the effect of thermal 

perturbation to the flow field and the induced streaming potential which is defined as the ratio of 

the temperature difference to the cold side temperature (which is chosen as the reference 

temperature), .i.e.  γ = ΔT/TC. The upper limit of γ is chosen as 0.1. Since TC ~ 298.15 K (i.e. 

room temperature is chosen as reference temperature), it indicates that the maximum temperature 

difference (ΔT) in our study is chosen to be ~ 30 K approximately. This upper limit is chosen by 

keeping in mind the under-prediction of the perturbation solution at a higher value of γ. Besides, 

as highlighted in the literature, 25 K temperature difference (ΔT) can result in a significant 

alteration in fluid physical properties like viscosity, thermal conductivity, electrical permittivity, 

etc. (Lide 2009, Dietzel & Hardt 2017). 
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 Now Cμ is the dimensionless parameter indicating the temperature sensitivity of fluid 

viscosity. The reduction in the fluid viscosity for typical aqueous solutions [] for a temperature 

range of 25 K (starting from the reference temperature 298 K) can be fitted in the exponential 

form  1expref refT T        
where ref  is the reference fluid viscosity evaluated at the 

reference temperature refT . The corresponding the dimensionless form of this expression is 

 expref C        where γ = ΔT/TC  
and Cμ = ω1TC with ω1 denoting the relative change 

of viscosity with temperature. For 25 K temperature difference, the value of ω1 (which is nothing 

but -    1 T    ) is found to be 15.7 x 10
-3

 K
-1

 (Lide 2009, Dietzel & Hardt 2017) and the 

value of its corresponding dimensionless parameter (i.e. Cμ) turns out to be ~ 4.68 Keeping in 

mind this, although we have chosen a range of 10
-1

 ≤ Cμ ≤ 10 to report some results, the final 

graph which depicts the significant augmentation in dispersion coefficient by a combination of 

all involving parameters under the physically realizable scenario, we have chosen the value of Cμ 

as 5.  

 Similarly, the reduction of the electrical permittivity of fluid with temperature can be 

correlated in a similar exponential form:  2expref refT T        
and the corresponding non-

dimensional form becomes  expref C        where 
2 CC T   denoting dimensionless 

parameter for relative change of electrical permittivity with temperature. For the same 25 K 

temperature difference (ΔT), the value of ω2 (    2 1 T       ) is found to be 4.35
 
x 10

-3
 K

-

1
 (Lide 2009, Dietzel & Hardt 2017) and Cε becomes ~ 1.29. Therefore, although a range of 10

-1
 

≤ Cε ≤ 10 is used to show some results indicating its effect, for the final graph representing the 

massive augmentation in dispersion coefficient, Cε = 1 is used.  

 The same reasoning can be applied for other parameters like Ck representing the relative 

change of fluid thermal conductivity with temperature. The dimensional and corresponding 

dimensionless form of thermal conductivity reads as  3expref refk k T T     and 

 expref kk k k C    respectively with 3k CC T . For ΔT = 25 K, ω3 (    3 1 k k T     ) 

turns out to be ~ 2.41 x 10
-3

 K
-1

 (Lide 2009, Dietzel & Hardt 2017) and Ck ~ 0.72. Hence, Ck = 1 

is chosen while obtaining the temperature distribution. Also, higher Ck indicates more sensitivity 

of thermal conductivity which may eventually result in a departure from the linear temperature 

distribution. 

 Similarly, the coefficient of the relative change of diffusivity of ions    1 D D T    for 

25 K temperature difference (ΔT) is ~ 19.1 x 10
-3

 K
-1

 (Lide 2009, Dietzel & Hardt 2017) and CD 

becomes ~ 5.69. Therefore, we have chosen the value of CD to be 5 while showing its effect on 

the flow field and the dispersion coefficient in Section B of the supplementary material. 

 The parameter Cζ shows the sensitivity of the zeta potential with temperature. The reason 

for choosing this specific range (supported with experimental reference) is highlighted in Section 

A.2 of the supplementary material. 
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 Now we recall the definition of the parameter χ (
D D

D D
  

 





) which indicates the 

difference in diffusivities between cation and anions. Let us consider aqueous NaCl solution as 

an example. As reported in the literature, the diffusivity values of Na
+
 and Cl

-
 ions are 1.334 × 

10
-9 

m
2
 s

-1
 and 2.032 × 10

-9 
m

2
 s

-1
 (Zhang et al 2019, Haynes et al. 2014) respectively and thus, 

the value of χ becomes ~ -0.207. Similarly, for the KCl solution (where diffusivity of K
+
 is 

1.957× 10
-9 

m
2
 s

-1
), the value of χ turns out to be ~ -0.019. For LiCl solution (diffusivity of Li

+
 is 

1.029× 10
-9 

m
2
 s

-1
(Zhang et al 2019, Haynes et al. 2014)), the value of χ becomes -0.328. 

Accordingly, we have chosen the range of - 0.3 ≤ χ ≤ 0 while showing the effect of χ on the 

streaming potential. 

 Next, we explain the range of the parameter Δ  T which denotes the difference in Soret 

coefficients between cations and anions. Soret coefficient (ST) is the ratio of the thermophoretic 

mobility to the diffusivity of the ions (
2

i
T

A B C

Q
S

N k T
  is the dimensional form and T T CS S T  is 

the dimensionless form) which characterizes the response of the ions upon the applied 

temperature gradient. Choosing the same example, i.e. aqueous NaCl solution, molar heat of 

transport (Qi) of Na
+
 and Cl

-
 ions are 3.46 KJ mol

-1
 and 0.53 KJ mol

-1
 (Zhang et al 2019, Agar et 

al. 1989) respectively. Therefore, the value of Δ  T  becomes ~ 1.18. Similarly, for LiCl solution, 

since the values of Qi are the same for Li
+
 and Cl

-
 ions, Δ  T  vanishes. Hence, the range of  0 ≤ 

Δ  T  ≤ 1 is chosen while showing its effect on the streaming potential. 

 The dimensionless parameter 
0p x 

 
signifies the strength of the imposed pressure 

gradient. 0 0p x    represents the scenario of the flow in absence of an external pressure 

gradient where the imposed temperature gradient (ΔT) solely governs the flow physics. For the 

value of  0p x 
 
= 10, the corresponding dimensional value of the pressure gradient turns out 

to be ~ 10
6
 Pa m

-1
 which is typically used in experimental studies of electrokinetic streaming 

field-induced flow (Heyden et al. 2007). 

 The dimensionless parameter 
0  indicates the inverse of the electrical double layer 

(EDL) thickness where 0  = 10 implies that the thickness of the EDL is 10 times thinner as 

compared to the channel height. Using the definition of 
2 2

0

2

ref B

n z e

k T



 , this value 

0 0 h 
 

can be attained for bulk ionic number concentration  ∞ = 6.023 × 10
20

 mol
-1

. 

 To explain the range of Deborah number associated with the flow of viscoelastic fluids, 

first, we invoke the definition of Deborah number (De) ref ref cDe u  . While showing the 

results for viscoelastic fluids in Figures 3a-3b, we have chosen the respective scales of velocity 

( cu ) as O(10
-4

) ms
-1

, the inverse of the electrical double layer (EDL) thickness ( ref ) as 10
7 

m
-1

, 

fluid relaxation time ( ref ) as 10
-4

 s to 10
-3

 s such that the value of Deborah number (De) lies in 

between 0.1 and 1. 
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 Another non-dimensional parameter related to viscoelastic fluid is Cλ representing the 

reduction of the fluid relaxation time with temperature. As shown in previous experimental 

studies (Pan et al. 2018), this reduction can be correlated in the exponential form 

 4expeff ref refT T        
and the corresponding dimensionless form 

 expeff ref C       . As discussed later in Section E2 of the supplementary material, the 

relative change of fluid relaxation time with temperature    4 1 R R Cd dT C T     

 comes out to be of the order of O(10
-1

) K
-1

 and thus, the value of Cλ turns out to be close to ~ 3 

(approximately). Accordingly, we have chosen Cλ = 3 while representing the results of the 

dispersion coefficient for viscoelastic fluids (as shown in figure 3b (iii) of the main paper). 

Section C2.  Comparison between asymptotic approach and exact/numerical solution 

As mentioned in the main manuscript, both approximate and exact solutions are obtained for the 

axially applied thermal gradient for the case of a Newtonian fluid. Figure S9(i) depicts the 

comparison of volumetric flow rate ratios between the asymptotic (approximate) and exact 

solutions as a function of Cμ which denotes the sensitivity of fluid viscosity with temperature. 

The volume flow rate ratio (Qr) is defined as the ratio of the net throughput because of the 

combined action of imposed pressure gradient and temperature gradient to that due to the sole 

action of a pressure gradient. Here Cμ is varied over two decades ranging from 10
-1

 to 10
1
 while 

keeping other parameters constant. As evident, the asymptotic solution closely approximates the 

exact solution up to Cμ = 3. Beyond this critical value of Cμ, a large deviation between these two 

solutions is observed with asymptotic approach under-predicting the results significantly at 

higher Cμ. In figure S9(ii), comparison of the same has been shown for varying γ, which denotes 

(i) (ii)

 

 

the ratio of the imposed temperature difference with respect to the reference temperature, i.e. 

quantification of the degree of thermal perturbation imposed. In this context, it is necessary to 

note that our asymptotic analysis is corrected up to first order in γ. Therefore, our findings can 

capture the linear thermal effect only. For lower Cμ, the asymptotic solution approximates the 

exact solution reasonably well while at higher Cμ, deviation takes place between the two 

solutions with asymptotic solution under-predicting volumetric flow rate beyond γ = 0.042. 

FIGURE S9. Volume flow rate ratio (Qr) with (i) Cμ and (ii) γ respectively. Symbols show the 

results obtained from exact solution while lines are for asymptotic solution.  
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 For the case of transverse thermal gradient, since no exact solution is possible, a 

comparison between the asymptotic approach and the numerical solution has been done and is 

presented in figure S10. Since no closed-form solution for the flow field is possible for the case 

of the transverse temperature gradient, numerical solution (this is performed using the finite 

element solver COMSOL Multiphysics) has been carried out to check the validity of the 

asymptotic solution. First, the temperature distribution (θ) in the transverse direction ( ) is shown 

where the asymptotic solution closely matches the numerical solution for the lower Ck. Here also 

(similar to the case of axial temperature gradient), higher the value of Ck, more is the departure 

from the linear variation, more is the deviation between the two solutions as depicted in the inset 

(zoomed view for Ck = 10) of figure S10 (i). For potential distribution, predictions of two 

solutions are very close in the electroneutral region while deviation can be observed in the region 

close to the wall where the thermal effects are at its prominence on altering the potential profile. 

Also, this deviation gets amplified (as visible in the inset of figure S10 (ii)) when one increases 

the value of Cε  i.e. enhancing the sensitivity of electrical permittivity with temperature. Now, 

the comparison of the flow rate ratio (Qr) dependence on the thermal perturbation parameter γ is 

shown in figure S10 (iii) where γ is varying from 0 to 0.1. Since the asymptotic approach is 

truncated up to the first order of perturbation, it is expected to get a linear dependence of the 

results on perturbation parameter γ. Here, the asymptotic solution matches closely with the 

numerical solution for the lower value of Cμ. As one starts increasing Cμ, the deviation between 

the two solutions starts to become noticeable (figure S10 (iii)). For Cμ = 3, this deviation can be 

seen beyond γ = 0.06 because of the inability of the asymptotic solution to capture the non-linear 

dependence of the flow rate with imposed thermal gradient. Now keeping γ fixed, Cμ is varied 

from 10
-1

 to 10 to check its influence on altering the flow rate. In the region 10
-1

 ≤ Cμ ≤ 3, two 

solutions closely match each other and beyond Cμ = 3, under-prediction in flow rate ratio (Qr) by 

the asymptotic solution can be noticed (figure S10 (iv)). 
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(i) (ii)

(iii)

(iv)

 

 

 

  

Section D. Results for the case of transverse temperature gradient 

 In the case of temperature gradient applied in the transverse direction, the primary driving 

force for flow actuation is the axially applied pressure gradient while the contribution from the 

imposed thermal gradient (ΔT) is secondary through physical property alteration and introducing 

a permittivity-variation induced body force (this term is   C y y       as observed in the 

x-component of the momentum equation S46). Apart from this, a concentration gradient in the 

transverse direction is also induced because of the imposed temperature difference which creates 

a transverse migration of the ions from the hot region to the cold region (mathematically this can 

be observed from equation (S41) of the supplementary material which tells us that in the electro-

neutral (i.e. ϕ = 0) region,     1 i i Tin n y S y       ). This migration acts as a resistance 

in the axial separation between the ions thus creating a weaker streaming field. A further source 

of alteration in the streaming potential upon the applied thermal gradient comes from factors like 

modulated viscous resistance of flow, change in effective EDL thickness, permittivity variation 

induced alteration in streaming current (as previously discussed), etc. 

FIGURE S10. Comparison between asymptotic and numerical solution for transverse thermal 

gradient. (i) Temperature distribution and (ii) potential distribution in the y-direction. (iii) 

Flow rate ratio (Qr) with perturbation parameter γ, (iv) flow rate ratio (Qr) with varying Cμ. 
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 Contrary to the case of axial thermal gradient, here the flow physics is strongly dependent 

on the parameter χ which indicates the difference in diffusivities between the counter-ions and 

co-ions. Decreasing the value of χ indicates more diffusivity of the co-ions than counter-ions in 

the upstream section. This leads to more migration of the co-ions in the upstream section, 

resulting in a reduction of the streaming potential. As depicted in inset I of figure S11a (i), 

streaming potential ratio (Er) decreases twice from 4 to 2 as χ  is changing from -0.1 to -0.3. As χ 

decreases, the magnitude of the maximum velocity increases more than twice, as observed in 

figure S11a (i). Interestingly, for χ = -0.3, the position of maxima is close to the channel 

centreline while for χ = -0.1, this is shifted away from the channel centreline towards the right 

i..e. towards the direction of the thermal gradient. For χ = -0.1, the velocity profile is slightly 

deviating from the parabolic behavior because of the generation of stronger streaming field-

induced backflow. As χ is decreasing, a lesser generation of streaming potential makes the effect 

of pressure gradient predominant and velocity distribution follows parabolic behavior. Here, the 

effect of χ  on the flow field is observed only in the higher degree of confinement of channel 

(observed at 
0 1  ) and gets diminished with decreasing the extent of confinement (i.e. larger 

region of electro-neutrality). The inset II of figure S11a (i) shows that increasing 
0  (i.e. 

decreasing confinement) from 1 to 10 makes the effect of χ on flow-field insignificant. With 

decreasing χ, there is a negligible difference between the magnitude of maximum velocity as 

shown by the zoomed view in inset II. 

 Keeping χ constant, the velocity distribution for varying Cμ is shown in figure S11a (ii). 

Since Cμ signifies the sensitivity of fluid viscosity with temperature, higher the value of Cμ, 

higher is the reduction of the viscosity, lower is the resistance to drive the flow. Because of the 

strengthened advective current, streaming potential ratio (Er) is increased slightly as Cμ is 

increased from 1 to 5. For lower Cμ, the velocity profile is parabolic in nature while at higher Cμ, 

the enhanced sensitivity of fluid viscosity creates a strong departure from the parabolic 

distribution with the maxima being shifted towards the hot region. Increasing 0  
ensures lesser 

penetration of EDL in the bulk resulting in lowering the net streaming potential thereby 

enhancing the magnitude of the flow velocity to some extent as depicted by the dotted lines in 

figure S11a (ii).  

 Figure S11a (iii) shows the transverse variation of the velocity field with increasing Cε. 

Here, Cε indicates the sensitivity of permittivity with temperature. The contribution of Cε 

primarily comes through the alteration in the potential distribution upon increasing Cε and 

through the permittivity-induced forcing term in the fluid momentum transport. Here, streaming 

potential ratio (Er) decreases (inset I of figure S11a (iii)) slightly with increasing Cε resulting in a 

small increment in the velocity magnitude. Similar to the effect of χ, here also increasing 0  

from 1 to 10 makes the effect of Cε on the flow field inconsequential as evident from inset II 

(where zoomed view of maximum velocity is presented) of figure S11a (iii). 

 The variation of the velocity field in the y-direction for different Δ  T 
 is shown in figure 

S11a (iv) where Δ  T 
means the difference in thermophoretic mobilities between cations and 

anions. Increasing Δ  T 
implies higher thermophoretic mobility of counter-ions than co-ions 

which leads to preferential migration of the counter-ions towards the cold region. This leads to 

an ionic redistribution resulting in an asymmetry in the potential distribution within EDL. On 

observing the momentum equation S46, one can understand that the role of Δ  T 
comes through 
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the charge distribution alteration (via the modulated EDL thickness and the term 

   2

0 0 01 TavgC S     ) which further perturbs the fluid advection motion. This, in turn, 

influences the advection current and the induced streaming field. Accordingly, the streaming 

potential ratio (Er) 
increases from ~ 1.8 times to ~ 2.05 times as one increases Δ  T 

from 0 to 1 

following a linear dependence. The enhanced streaming field induces more backward flow thus 

lowering the magnitude of the flow velocity as observed in figure S11a (iv) for Δ  T = 1. 

(i)

(iii) (iv)

(ii)

 
 

 

  

 As discussed in the case of an axial thermal gradient, any perturbation to the flow field is 

strongly reflected in the associated dispersion coefficient because of its strong dependence on the 

flow velocity. By inspecting the velocity distributions demonstrated by figure S11a, one general 

observation can be made that the effect of most of the parameters (except Cμ) on the flow field is 

noticeable only under higher confinement (i.e. at lower 0 ) and becomes negligible at higher 0 . 

Apart from 0 , Cμ is another important parameter whose effect on the flow field is far more 

significant compared to other parameters (Cε, Δ  T) not only by altering the magnitude of the flow 

velocity but also creating a strong departure from the parabolic distribution. Accordingly, in 

figure S11b we have incorporated the variation of dispersion coefficient ratio (  eff) with two 

parameters Cμ 
and 0 . Similar to axial ΔT, drastic reduction in flow resistance with increasing 

Cμ is reflected in figure S11b (i) where   eff is increased 3 times as Cμ is varying from 1 to 10. 

FIGURE S11a. Velocity distribution in the y-direction for varying (i) χ, (ii) Cμ, (iii) Cε and 

(iv) Δ  T 
 respectively (evaluated at 0 0.1p x   ). 
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 The reduced strength of electrokinetic forces with increasing 
0  

lowers the thermo-

electric perturbation to the flow field and hence, dispersion coefficient ratio (  eff) (at γ = 0.1) 

reduces from 1.19 to 1.18 as 
0  

is changed from 1 to 10 with alteration being suppressed beyond 

0  
= 4.4. Corresponding results for lower γ are similar with saturation occuring at higher 

0 . 

(i) (ii)

 

   
 

(i) (ii)

 
 

  

  

 Now, the effect of two other parameters Cε and Δ  T are shown in figure S11c where the 

reduced streaming potential with increasing Cε results in increasing the dispersion coefficient. 

However, Cε turns out to be less effective at lower thermal perturbation (γ = 0.05) and noticeable 

effect can only be observed at higher γ (figure S11c (i)). Similarly, higher volumetric suppression 

due to enhanced streaming potential with increasing Δ  T lowers the dispersion coefficient with 

Δ  T becoming influential only at a higher strength of pressure gradient (figure S11c (ii)). 

Section E1. Results in the case of fluid relaxation time varying with polymer concentration 

In the rheological characterization of polymeric fluid, Zimm's definition of relaxation time (λz) 

has been widely used which tells that the fluid relaxation time is independent of the polymer 

FIGURE S11b. (i) Variation of dispersion coefficient ratio (  eff) with Cμ, (ii) variation of the 

same with 
0  for different γ. 

FIGURE S11c. Variation of   eff 
with 

0  for different values of (i) Cε and (ii) Δ  T 
 

respectively. 
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concentration. However, some experimental studies (Tirtaatmadja et al (2006)) have reported 

that even for solutions in the dilute regime, fluid relaxation time can vary with the polymer 

concentration with the effective relaxation time (λeff) showing one order of magnitude higher 

value than Zimm's relaxation time (at higher polymer concentration). 

 While showing the results for viscoelastic fluids in figures 3a-3b of the revised 

manuscript, we have chosen the respective scales of velocity (
cu ) as O(10

-4
) ms

-1
, the inverse of 

the electrical double layer (EDL) thickness ( ref ) as 10
7 

m
-1

, fluid relaxation time ( ref ) as 10
-4

 s 

to 10
-3

 s such that the value of Deborah number (De) lies in between 0.1 and 1. Now, to 

incorporate the effective change of fluid relaxation time with polymer concentration (as shown 

by Tirtaatmadja et al (2006)) on our results, we should take into account both the changes in 

fluid relaxation time as well as the viscosity enhancement with increasing polymer 

concentration. In this context, we recall the definition of the characteristic velocity scale ( cu ) 

which is inversely proportional to the fluid viscosity ref . We have used the relaxation time and 

viscosity data from table 2 of this mentioned paper where properties for aqueous Polyethylene 

Oxide solution (Mw = 1 x 10
6
 g mol

-1
)
 
are given. We have calculated the Deborah number (De) 

values for different polymer concentrations (c) ranging from * 0.01c c   to * 0.63c c   where 

c* denotes the overlap concentration above which a transition from dilute to semi-dilute regime 

takes place. 

 The variations of the streaming potential ratio (Er), volumetric flow rate ratio (Qr) and 

dispersion coefficient ratio (  eff) as a function of *c c  are shown in figure S12. As the polymer 

concentration (c) is increased gradually, both the fluid relaxation time and viscosity increase. 

The relative change of fluid relaxation time and viscosity with increasing polymer concentration 

are shown in insets I and II of figure S12 (a). It is clear from these insets that the rate of increase 

in relaxation time is much higher as compared to that of viscosity.  

 Now, Deborah number (De) is defined as the ratio of the elastic to viscous forces and 

hence, as c increases, the relative strength of elasticity increases which enhances the degree of 

viscoelasticity of the fluid thereby leading to a slight increment in the streaming potential for Cμ 

= 1, Cλ = 1. Cμ and Cλ denote the relative sensitivity of fluid relaxation time and viscosity with 

temperature. Increased streaming potential induces more backward electrokinetic flow in the 

reverse direction and as the dispersion coefficient is more susceptible to change in flow velocity, 

it decreases slightly as *c c  is increased from 0.01 to 0.63. Next, we have evaluated the same at 

higher Cμ and lower Cλ (i.e. at Cμ = 3, Cλ = 1). Higher Cμ at one side strongly enhances the 

streaming potential (figure S12(a)) and thus the backward electrokinetic flow. However, the 

viscous resistance to the flow decreases at a much higher rate such that it overweighs the effect 

of reverse electrokinetic flow and   eff increases up to 1.8 times as *c c is changed from 0.01 to 
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(a)

(b) (c)

(a)

 

 

 

  

0.63 (shown in figure S12(c)). Now, decreasing the value of Cλ indicates less reduction of fluid 

relaxation time with temperature indicating more extent of viscoelasticity of fluid thus increasing 

the dispersion coefficient ratio (  eff) slightly as Cλ is changed from 1 to 0.25. Dependence of Qr 

on Cμ and Cλ remains similar to that for   eff where instead of decreasing, a slight increment of Qr 

is observed for Cμ = 1, Cλ = 0.25 while Qr remains constant for Cμ = 1, Cλ = 1 where two 

opposing factors Cμ and Cλ nullify each other (figure S12(b)). 

Section E2. Part1: Flow rate variation of viscoelastic fluids for axial temperature gradient 

 For axially applied temperature gradient, the flow rate ratio (Qr) variation with Deborah 

number (De) is highlighted in figure S13 for two varying factors Cμ and Cλ respectively. At one 

side, increasing Cμ induces more streaming potential leading to the net volumetric suppression 

due to reverse electrokinetic flow, on the other hand, viscous resistance in the flow decreases  

FIGURE S12: The variation of (a) streaming potential ratio (Er), (b) volume flow rate ratio 

(Qr) and (c) dispersion coefficient ratio (  eff) as a function of polymer concentration (for 

polymeric solution in the dilute regime). The relaxation time (λ) and viscosity (μ) values 

are taken from the experimental work of Tirtaatmadja et al. (2006). 
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(i) (ii)

 
 

 

significantly. Hence, net throughput through the microchannel is determined by their relative 

strengths. For the lower value of Cμ, Qr remains almost unaffected with the variation of De (at Cμ 

= 1). However, with increasing Cμ, Qr increases sharply with an enhancement up to ~ 2.03 times 

can be noticed at Cμ = 3 (figure S13 (i)). Similarly, increasing Cλ has an inverse effect on the 

flow rate as Qr decreases with De from 1.78 times to 1.18 times as Cλ is changed from 0.25 to 3. 

Since the net streaming potential reduces beyond Cλ = 1, reduced volumetric suppression makes 

Qr still higher than unity at Cλ = 3 (figure S13 (ii)). 

Section E2. Part2: Dependence of fluid relaxation time with temperature 

For dilute polymeric solutions, fluid relaxation time is described by the well-known Zimm's 

relaxation time which is independent of the polymer concentration (Del Giudice et al. 2015, 2017). 

Previous experimental studies have reported that Zimm's relaxation time is inversely proportional to 

the fluid temperature (Del Giudice et al. 2015, 2017; Pan et al. 2018). In this study, we have used the 

following dependence of fluid relaxation time with temperature  4expeff ref refT T        
which, in the dimensionless form, can be expressed as  expeff ref C       . 

 

 

 
FIGURE S14. Dependence of fluid relaxation time with temperature. Reported experimental results 

are fitted considering the exponential function used in the present analysis (Pan et al. 2018). 

FIGURE S13. Volume flow rate ratio (Qr) with De for different (i) Cμ and (ii) Cλ 

respectively. 
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For a representative example, experimental results of relaxation time reduction with temperature for 

two different samples (dilute Polystyrene samples (PS) of Molecular weights 0.55 M and 2 M 

respectively) (Pan et al. 2018) have been chosen. We have fitted this variation with our chosen 

exponential form and the experimental data points match reasonably well using the above-mentioned 

correlation (figure S14) where the value of the relative change of fluid relaxation time with 

temperature -   1 R Rd dT   is found to be of the order of O(10
-1

) K
-1

 which in turn equals to 

CC T . For the reference value 298.15KCT  , the value of the coefficient Cλ turns out to be close 

to ~ 3 (approximately). Accordingly, we have chosen 3C   while representing the results of 

dispersion coefficient for viscoelastic fluids (as shown in figure 3b (iii) of the main paper). 

Section E3.  Results for viscoelastic fluids  in case of a transverse temperature gradient 

For the transverse thermal gradient, variations of dispersion coefficient ratio (  eff) with Deborah 

number (De) are shown in figure S15 for two important factors associated with the flow of 

viscoelastic fluids, .i.e. Cμ and Cλ respectively. For a lower value of Cμ, two counter-acting effects of 

viscous resistance of flow and elasticity-mediated perturbation to the flow field are of comparable 

magnitude and dispersion coefficient ratio (  eff) decreases gradually (from 1.17 to 1.06) with 

Deborah number (De). Similar to the case of an axial thermal gradient, increasing Cμ strongly 

influences the dispersion coefficient with an enhancement up to ~ 1.9 times can be seen as Cμ is 

increased from 1 to 5 (figure S15 (i)). For lower Cλ (Cλ = 0.25), less is the elasticity-induced 

disturbance to the flow field 

(i) (ii)

 

 

 

making the effect of Cμ (i.e. lower viscous resistance of flow) dominant over Cλ resulting in an 

increment up to ~ 1.4 times (figure S15 (ii)). As one starts increasing Cλ, its effect on the flow field 

and resulting dispersion coefficient starts to become important which lowers the dispersion 

coefficient ratio (  eff) from 1.4 to 1.3 as Cλ is changed from 0.25 to 1. Beyond Cλ = 1, increasing Cλ 

has its inverse effect on dispersion coefficient as   eff  undergoes a reduction from ~ 1.23 to ~ 1.14 

when Cλ is increased from 1 to 3 indicating its pronounced effect in governing the hydrodynamics 

and the resulting dispersion coefficient (figure S15 (ii)). 

 

FIGURE S15. Variation of dispersion coefficient ratio (  eff) with Deborah number (De) for 

different (i) Cμ  and (ii) Cλ  respectively (for the case of transverse thermal gradient). 
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Section F1.  Coefficients involved in the streaming potential expression 
The coefficients of the streaming potential described by equation (S28) are given in the following 
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Expression of the function A 
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The expression of function A is given below 
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where 
6C  and 

7C  are the integration constants which are obtained using the previously 

mentioned boundary conditions. Now, the expressions for 
1P -

6P  are presented below 
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Some of the coefficients of these expressions are presented below while the remaining 

coefficients are already reported in section F1 of the supplementary material. 
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Section F2. The coefficients of equation (S44) and equation (S52) 

The coefficients of potential distribution described by equation (S44) are as follows 
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Coefficients involved in the expressions of steaming potential (equation (S52)) are shown below 
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Section F3. Coefficients of the cubic equation for determining 
0xE
 
in viscoelastic fluids  

For axial temperature gradient, coefficients of the cubic equation 3 2
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involved in the estimation of 
0xE
 
(evaluated at CD = 0) are given below 
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