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Figure 1. Instantaneous fields of (a) uT , (b) vT , and (c) wT on the x–z plane near the
bottom (located at y/h = 0.015). The results of case 1 are shown.

A. Instantaneous field of small-scale turbulence

Figure 1 shows the contours of the instantaneous background turbulence velocity
fluctuations uT

i near the water bottom at y/h = 0.015. As shown in figure 1(a), the
magnitude of uT is larger in the D-region than in the H- and U-regions. Moving from
the D-region to the U-region, the magnitude of uT decreases gradually. Similar to uT ,
as shown in figures 1(b) and 1(c), the intensities of vT and wT are stronger in the D-
region than in the U-region. The results shown in figure 1 indicate that the background
turbulence is respectively enhanced and suppressed in the regions with positive and
negative large-scale streamwise velocity fluctuations.

Figure 2 shows the contours of uT
i in the x–z plane at y/h = 1.985. Similar to the

observation in the near-bottom region (figure 1a,b), the magnitudes of uT and vT near
the surface are larger in the D-region than in the U-region (figure 2a,b). The localizing
effect on the background turbulence spanwise velocity wT is different from that on uT

and vT near the water surface. As shown in figure 2(c), the intensities of wT in the D-
and U-regions are comparable.
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Figure 2. Instantaneous fields of (a) uT , (b) vT , and (c) wT on the x–z plane near the water
surface (located at y/h = 1.985). The results of case 1 are shown.

B. Derivation of transport equations of localized Reynolds stresses

According to the triple decomposition of the velocity, the governing equation of the
mean velocity 〈ui〉, the Langmuir cell content velocity fluctuation uL

i , and the background
turbulence velocity fluctuation uT

i can be obtained through the following steps. First, the
governing equation of 〈ui〉 is obtained by applying the time and plane averaging to the
C–L equation, which is expressed as
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Then, subtracting (B.1) from the C–L equation gives the following governing equation
for the total velocity fluctuation u′

i:
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The streamwise averaging of (B.2) results in the governing equation for the Langmuir
cell content velocity fluctuation uL

i , expressed as
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(B.3)

Further subtracting (B.3) from (B.2) gives the following governing equation for the
background turbulence velocity fluctuation uT

i :
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Here, ΠT = uS
j u

T
j + pT is the effective pressure and ωT

k = ǫknm∂uT
m/∂xn is the vorticity.

To derive the transport equation of 〈uT
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as
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(B.5)

To derive (B.5) from (B.4), the two parts of the effective pressure are separated, and
the identity ǫijkǫknm = δinδjm − δimδjn is applied. The transport equation of uT

j is
also obtained by substituting all superscripts i in (B.5) with j. Multiply the governing
equations of uT

i and uT
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j and uT
i , respectively, and then take the summation of

the two resultant equations, we obtain to the following transport equation of uT
i u

T
j :

∂uT
i u

T
j

∂t
+ (〈uk〉+ uS

k )
∂uT

i u
T
j

∂xk

= −uT
j u

T
k

∂〈ui〉

∂xk

− uT
i u

T
k

∂〈uj〉

∂xk

−

(

∂uT
j p

T

∂xi

+
∂uT

i p
T

∂xj

)

+ pT

(

∂uT
j

∂xi

+
∂uT

i

∂xj

)

−
∂uT

i u
T
j u

T
k

∂xk

+

(

uT
j

∂〈uT
i u

T
k 〉x

∂xk

+ uT
i

∂〈uT
j u

T
k 〉x

∂xk

)

+ ν
∂2uT

i u
T
j

∂xk∂xk

+

(

∂(τsgsik )TuT
j

∂xk

+
∂(τsgsjk )TuT

i

∂xk

)

− 2ν
∂uT

j

∂xk

∂uT
i

∂xk

−

(

(τsgsik )T
∂uT

j

∂xk

+ (τsgsjk )T
∂uT

i

∂xk

)

−

(

uT
j u

T
k

∂uS
k

∂xi

+ uT
i u

T
k

∂uS
k

∂xj

)

−
∂uT

i u
T
j u

L
k

∂xk

−

(

uT
j u

T
k

∂uL
i

∂xk

+ uT
i u

T
k

∂uL
j

∂xk

)

.

(B.6)

Applying the time and streamwise averaging to (B.6) yields the transport equations of
the localized Reynolds stresses 〈uT

i u
T
j 〉xt.
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Figure 3. Vertical profiles of budget terms (a) D33 and (b) Π33 at UC, HC, and DC. The
results of case 1 are shown. The budget terms are scaled by u4

τ/ν.

C. Comparison of pressure terms in the budget equation of localized

spanwise Reynolds normal stress near the surface

Figure 3 compares D33 and Π33 among UC, HC, and DC. As shown, D33 is compa-
rable at HC and UC. In contrast, Π33 acts as a secondary source at UC, while at HC
the contribution of Π33 in the budget balance is unimportant.


