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1. Asymptotic expansion near k−vertex
The leading term in the opening expansion for x → 0 is given by the propagation

condition w = `
1/2
k x1/2 written in terms of the toughness lengthscale `k. To obtain the

corresponding leading term in the net pressure expansion, we write the fluid balance
equation in terms of the viscosity `m, leak-off `m̃, and new leak-in `õ = (µ′Q′V 1/2)2/3

lengthscales as follows (similar to the treatment of Appendix B of (Garagash et al. 2011))
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õ

w

ˆ x

0

p(s)/E′

2
√
x− s

ds.

Further, taking the integral by parts on assumption that |p(0)| < +∞, we can write
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Further, assuming that the pressure gradient at the tip is also bounded, and using the
leading term expression for the opening, we observe that the left hand side (∝ fluid
velocity) and the integral term vanish when x→ 0, suggesting that to the leading order
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as recorded in table 2 of the main text.
The next order (non-constant) term in the net pressure expansion corresponds to the

following linear equation on the net pressure gradient, as results from (1.1) with (1.2)
and use of the opening leading asymptote,
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0

dp

ds

√
x− sds,

where the lengthscale ratio can be conveniently expressed in term of the leak-in non-
dimensional number ζ, `õ/`k = ζ2. This linear equation possesses a power law solution
which we choose to write in the form dp/dx = −p(0) ζ3 (x/xo)

γ(ζ)−1 where xo is an
unknown constant and the exponent γ(ζ) is given implicitly by
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= ζ3. (1.3)

This prescribes monotonically increasing γ(ζ) from zero in the Carter’s limit ζ → 0,
γ ∼ ζ3, to infinity when ζ →∞, γ ∼ π1/3ζ2/3.

The corresponding k-vertex expansion of the net-pressure follows by integration

p
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This form, upon substituting expression for p(0) is given in Eq. (3.11) of the main text.
The above net pressure expansion for ζ > 0 can be formally reduced to the expression
given by (Garagash et al. 2011) in the Carter’s limit ζ → 0, as given by Eq. (3.12) of the

main text. Indeed, the latter follows upon noticing that, first, p(0)/E′ = −ζ−3 `1/2k /`
1/2
1

where `1 = (`
−1/2
mk + `

−1/2
m̃k )−2 is the lengscale introduced by (Garagash et al. 2011) in the

Carter’s case, second, γ ∼ ζ3 and xγ/γ ∼ 1/γ + lnx when ζ → 0.
To obtain the next order term(s) in the k-vertex expansion for the opening, we follow

the approach of (Garagash et al. 2011) (Appendix B) by evaluating the crack elasticity
integral (Eq. (2.3) of the main text) using the net-pressure expansion (1.4), truncating
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the upper limit of integration to some finite value X, and then expanding the result for
small x→ 0
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where contributions to the x3/2-term from the both terms in the net pressure expansion
are dependent on the truncated value of X, and thus, a priori unknown part of the full
numerical solution for semi-infinite fracture, lumped in the above into a single unknown

prefactor x
−1/2
1 . As further discussed in the main text the order of the non-leading

x3/2 and xγ+1 terms in the opening expansion depends on the value of ζ, specifically,
the former is dominant among the two when 3/2 < γ(ζ) + 1, which takes place when
ζ > 0.862, and the opposite is true, i.e. xγ+1 is dominant among the two, when ζ < 0.862.

2. Asymptotic expansion near m̃−vertex
The intermediate leak-off dominated asymptotic solution in the mk−scaling (Table 3

of the main text) has the form: Ω(ξ) = β̃0χ
1/4ξ5/8, Π(ξ) = δ̃0χ

1/4ξ−3/8. This asymptotic
behaviour arises in the distance range max(`m̃k, `m̃õ) � x � `m̃m (in dimensional
coordinate x). In the parametric space the essential condition for m̃ asymptote existence
is χ� 1 and ψ = χ/ζ � 1 which is a consequence of transition lengthscales separation.

Firstly, we introduce “bar” variables that is normalised values on the leak-off asymp-
tote.

Ω̄(ξ) =
Ω(ξ)

χ1/4ξ5/8
, Π̄(ξ) =

Π(ξ)

χ1/4ξ−3/8
.

In these new variables lubrication equation can be rewritten in the form:
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We find expansion terms using monomial solutions in the following form:

w̄λ(ξ) = Bξλ, Π̄λ = Bf

(
5

8
+ λ

)
ξλ,

where parameter λ should satisfy the following condition 0 < 5
8 + λ < 1

Let us firstly consider zero-storage case (`m̃m =∞). Here we should consider the far-
field (x � max(`m̃k, `m̃õ) or ξ � max (χ−2, ζ8χ−2)) of the m̃õk pyramid face. In this
limiting case the first term in the right-hand side of Eq. (2.1) is absent:
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Further, we identity the presence of the small parameter in the interested limit (ξ →∞)
that is in the pressure-dependent leak-off term. Since we consider Π̄(ξ) in the form of
monomial solution: Π̄(ξ) ∼ ξλ, this term has the following form: ∼ ζ3 · ξλ−3/8 · χ−3/4.
According to the condition for λ parameter, we know that this power is less than zero and,

therefore, pressure-dependent term includes the small parameter
(
ζ8/(ξχ2)

)3/8
. So, we

could represent the “bar” solution in the form of the summation of Taylor and non-Taylor
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terms:
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Substituting this expansion into the lubrication equation for ’bar’ functions in this
particular limit, we could match coefficient in front of appropriate terms:

β̃0 = 2.53356, β̃−3 = −0.52481,

and for non-Taylor term we obtain the following equation for h̃:

−β̃−1(χ, ζ)f(h̃)(1− h̃)

(
1

ξ

) 5
8−h̃

= − 3

β̃4
0
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ξ
5
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.

Solving the obtained equation numerically, we obtain the following valued for param-
eter h̃: h̃ = 0.0699928. The coefficient β̃1(χ, ζ), which depends on the both parameters χ
and ζ, could not be found without general numerical solution.

In order to find the second part of the m̃-expansion it is necessary to consider the
zero-toughness case, namely, the near-field (x � `mm̃) of the m̃m−edge solution. Here
we neglect the pressure-dependent term in the right-hand side of the Eq. (2.1) because
of the near-field of this edge solution is represented by m̃−vertex solution that could
potentially occur in the general solution when the leak-off process becomes pressure-
independent (described by Carter’s law). This asymptotic solution is derived by Garagash
et al. (2011).

By using the aforesaid to limiting pats, we obtain the m̃−expansion.
Let us consider case of the large value of χ parameter and coordinate range x �

`m̃m. The O(1) solution is located on the zero-storage m̃õk−face. The next-order term
corresponds to the small storage χ−1 � 1 perturbation. This fact is the consequence of
the lubrication equation written in the `m̃k scaling (η = ξχ2):
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The first term in the right-hand side of the previous equation is a small storage correction
at distances η � χ8 (or in the dimensional form x � `m̃m). As a result, the next-order
term in the solution for the large χ parameter could be found in the form of Taylor
expansion in the small storage parameter ε = χ−1 � 1:
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(1)
, Π̄ = Π
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,

where Ω
(0)
, Π

(0)
is zero-storage m̃k-edge solution.

Substituting the Taylor expansion into lubrication equation and keeping terms of order
O(ε), we obtain the following equation:
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In the far-field (x� max (`m̃õ, `m̃k)) the O(1) term is given by the following equations:

Ω̄(ξ) = β̃0 +

˚̃
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η3/8

+
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η
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η
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where the values of coefficients and h̃ are derived earlier. The next-order term is found
in the form of monomial solution. Using the condition for the considered coordinate
range (η � 1), we could neglect both terms relating to the pressure-dependent leak-off

because of the following reason: substituting the expression of Π
(0)

into the first integral(
∼ 1√

η

´ η
0
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)
, it is possible to derive that it is proportional to the η in

the negative exponent; on the other hand, as shown earlier, that the second integral(
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of coordinate when the function Π
(1)

has the form of monomial solution. As a result,
both terms contain coordinate η in the negative exponent, and the equation could be
simplified to the following:

η
dΠ

(1)

dη
− 3Π

(1)

8
=

η1/8

Ω
(0)2
− 3Ω

(1)

Ω
(0)4

.

Further, we balance this equation with the help of the next-order term in the form:

Ω
(1)

= β̃1η
1/8, Π

(1)
= β̃1f(3/4)η1/8 where the numerical value of the coefficient β̃1 is

derived earlier.
Using the obtained result, we could conclude that m̃−expansion is the sum of the

far-field of the m̃õk face solution and the first term of the near-field of the m̃m-edge
expansion.

Repeating this analysis for the higher order terms O(ε2), O(ε3), we could derive other
terms from near-field m̃m-edge expansion.

As a result, the m̃−expansion in the mk−scaling (returning from “bar” variable to the
original variables in the mk−scaling) has the following form:
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(2.3)

where we use coefficients δ̃j = β̃jf
(
5
8 + j

8

)
for j = 0, 1, 2,

˚̃
δ−3 =

˚̃
β−3f(1/4) and δ̃−1 =

β̃−1f(h̃) are utilised.

3. Numerical scheme

The numerical method is an extension of the approach of Garagash et al. (2011). In
the this section, we recount the main parts of the numerical algorithms and also highlight
differences borne by the more general problem formulation in this study as compared to
Garagash et al. (2011).
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The coordinate range 0 < ξ <∞ is divided into three parts: [0, Ξ0], [Ξ0, Ξ∞], [Ξ∞,+∞]
(the normalized problem formulation in the mk−scaling is utilised). The first and the last
segments are approximated by the analytical asymptotic expressions for the near-field
Π∗0 (ξ) (subsection 3.3.1 of the main text) and the far-field Π∗∞(ξ) (subsection 3.3.2 of the
main text) correspondingly. For function Π∗0 (ξ) (in the majority cases) we utilise only
the leading term of the near-field asymptotic expansion. However, when parameter ζ is
small (ζ < 1) we also use the next order power term that is derived in Appendix 1. In
turn, for function Π∗∞(ξ), the m−vertex solution is utilised.

The intermediate segment, Ξ0 6 ξ 6 Ξ∞, is the computational domain that is
discretised by n nodes into n−1 sub-intervals (ξi, ξi+1), i = 1, ..., n−1 where ξ1 = Ξ0 and
ξn = Ξ∞. The value of pressure between nodes is approximated by linear combination
of the constant function Π0(ξ) = −1 and the far-field vertex solution Π∞. The whole
representation of the pressure profile is the following:

Π(ξ) =


Π∗0 (ξ), ξ ∈ (0, ξ1),

aiΠ0(ξ) + biΠ∞(ξ), ξ ∈ (ξi, ξi+1), i = 1, ..., n− 1,

Π∗∞(ξ), ξ ∈ (ξn,∞).

(3.1)

Coefficients ai and bi for i = 1, ..., n − 1 are found from values of pressure at nodes
(Πi = Π(ξi)) by imposing continuity of pressure distribution:

ai =
Π∞(ξi)Πi+1 −Π∞(ξi+1)Πi

Π∞(ξi)Π0(ξi+1)−Π∞(ξi+1)Π0(ξi)
, bi = − Π0(ξi)Πi+1 −Π0(ξi+1)Πi

Π∞(ξi)Π0(ξi+1)−Π∞(ξi+1)Π0(ξi)
.

Moreover, in the end nodes we define value of pressure by using analytical asymptotic
expansions Π∗0 (ξ) and Π∗∞(ξ):

Π1 = Π∗0 (ξ1), Πn = Π∗∞(ξn).

Fracture opening is found by integrating the inverted elasticity integral provided by Eq.
(2.3) of the main text, using the above approximate representation for the net-pressure,
in the following form

Ω(ξ) =
√
ξ + F [Π∗0 ](ξ, ξ1) +

n−1∑
i=1

(aiF [Π0](ξ, η) + biH[Π∞](ξ, η))

∣∣∣∣η=ξi+1

η=ξi

+H[Π∗∞](ξ, ξn),

where F and H are integral operators defined by

F [Π](ξ, η) =
4

π

ˆ η

0

K(ξ, η)Π(η)dη, H[Π](ξ, η) =
4

π

ˆ ∞
η

K(ξ, η)Π(η)dη.

The analytical expressions for the integrals in F and H for power and constant pressure
functions that represent Π∗0 (ξ), Π0(ξ), Π∗∞(ξ) and Π∞(ξ) are given in (Garagash and
Detournay 2005; Garagash et al. 2011).

Further, in each node we write out the lubrication and elasticity equations, and together
with boundary conditions forΠ1 andΠn they constitute the system of nonlinear algebraic
equations. It is solved numerically by using Levenberg-Marquardt algorithm implemented
in the SciPy library (Jones et al. 2001) of Python programming language.
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