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This supplementary material includes several details of calculations and methods used
in the main paper.

S:1. The prime function P (⇣)

The prime function P (⇣) was introduced in section 3. Therein, we presented an infinite
product representation. Whilst the product form o↵ers physical intuition, it also has poor
convergence properties. For numerical computations it is more convenient to express the
prime function P (⇣) as the rapidly convergent Laurent series (Crowdy 2012)

P (⇣) = C
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. (S:1.1)

This series converges quickly except when q is very close to unity. In that case, we
recommend calculating the prime function P (⇣) using the spectral method in Crowdy
et al. (2016), for which software is freely available (https://github.com/ACCA-Imperial/
SKPrime).
It is possible to show from the product formula 3.1 that the prime function P (⇣) has

the following properties

P (⇣�1) = �⇣�1P (⇣), (S:1.1.a)

P (q2⇣) = �⇣�1P (⇣), (S:1.1.b)

P (q2��1
1 ⇣)

P (q2��1
2 ⇣)

=
�1
�2

· P (��1
1 ⇣)

P (��1
2 ⇣)

. (S:1.1.c)

These properties will be used in the derivation of the ground e↵ect conformal maps.

S:2. Derivations of conformal mappings

In this section we derive the conformal mappings presented in section 3.1.

S:2.0.1. Derivation of circular wing map

Given that (3.2) is a Möbius mapping, it maps circlines to circlines. Since ⇣ = 1 is
a simple pole of the mapping, the boundary circle C0 is mapped to a circle of infinite
radius, i.e. a line. It is straightforward to show that this line is the real axis. Additionally,
C1 must be mapped to a circle, and it can be shown that, when s = 0, the image of C1 is
centered at i(q+q�1)/4 and has unit diameter. A typical circular wing map is illustrated
in figure S:2.5

S:2.0.2. Derivation of flat plate map

In order to derive the flat plate map (3.3), we will show that f takes constant phase
on C0 and C1 when the shifting constant s vanishes.
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(a) ⇣-plane

z = f(⇣)

(b) z-plane

Figure S:2.5: An example of a circular wing map (3.2).

(a) ⇣-plane

z = f(⇣)

(b) z-plane

Figure S:2.6: An example of a flat plate wing mapping (3.3).

We write A = Ãe�i↵ where Ã 2 R. The complex conjugate of f is then given by

f(⇣) = Ãei↵
P (e�2i↵⇣)

P (⇣)
. (S:2.1)

For ⇣ 2 C0, we may write ⇣̄ = 1/⇣ and use (S:1.1.a) to transform (S:2.1) into

f(⇣) = Ãe�i↵P (e2i↵⇣)

P (⇣)
= f(⇣). (S:2.2)

Therefore, f is pure real for ⇣ 2 C0. Since f contains a simple pole and is univalent, f(⇣)
spans the entire real line.
We now consider the case where ⇣ 2 C1. In this case, we have ⇣̄ = q2/⇣. Combining

this fact with (S:1.1.c) in (S:2.1) yields

f(⇣) = Ãei↵
P (e�2i↵/⇣)

P (1/⇣)
. (S:2.3)

A further application of (S:1.1.a) yields f = e2i↵f . Therefore, arg[f(⇣)] = �↵ for ⇣ 2 C1,
so f maps C1 to a slit inclined at an angle of �↵ to the real axis, which corresponds to
a flat plate at angle of attack ↵.

Typical flat plate wing maps are illustrated in figures S:2.6 and S:2.7.
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(a) ⇣-plane

z = f(⇣)

(b) z-plane

Figure S:2.7: An example of a flat plate wing mapping at zero angle of attack (3.4).

(a) ⇣-plane

z = f(⇣)

(b) z-plane

Figure S:2.8: An example of a circular arc wing map (3.5).

S:2.0.3. Derivation of circular arc wing map

We first note that the annulus may be mapped to a circle with a circular arc slit by
the mapping (Crowdy & Marshall 2006a)

⌘(⇣, �) =
P (⇣/�)

|�|P (⇣�)
. (S:2.4)

for any � 2 D⇣ . This mapping transplants the unit disc onto itself, and C1 onto a circular
arc slit. We now take another Möbius mapping to map the unit circle to the real axis
and the circular slit to another circular slit on the upper half plane:

f(⇣) =
B

⌘(1, �)� ⌘(⇣, �)
,

where B is a constant required to rotate and scale the map. Note that we have ensured
that there is a simple pole at ⇣ = 1. Composing the mappings gives

f(⇣) =
AP (⇣�)

P (⇣/�)P (�)� P (⇣/�)P (⇣�)
,

for another constant A.
A typical circular arc wing map is illustrated in figure S:2.8.
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S:2.0.4. Derivation of centered circular arc wing map

In order to derive the centered circular arc wing map, we first note that we may write

P (
p

⇣)P (�
p
⇣) = P2(⇣),

where
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1Y
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�
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�
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�
. (S:2.5)

The interpretation of P2 is that it is the prime function P (⇣) for an annulus where the
ratio of exterior to interior radius is q2. The analogous forms of (S:1.1.a, S:1.1.b, S:1.1.c)
are

P2(⇣
�1) = �⇣�1P2(⇣), (S:2.5.a)

P2(q
4⇣) = �⇣�1P2(⇣), (S:2.5.b)
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. (S:2.5.c)

The centered circular arc wing map (3.6) may therefore be written as

f(⇣) = Ãe�i�P2(⇣e2i�)P2(q2⇣)

P2(q2⇣e2i�)P2(⇣)
, (S:2.6)

where A = Ãe�i�. The first step in the derivation of the circular arc wing map is to see
that (S:2.6) is a circular arc slit map on q < |⇣| < 1/q: the circles |⇣| = q and |⇣| = 1/q
are transplanted to two circular arc slits. We first consider the circle |⇣| = q so that

f(⇣) = Ãe�i� P2(q4/⇣)

P2(q4e2i�/⇣)
· P2(q2e2i�/⇣)

P2(q2/⇣)
,

since ⇣ = q2/⇣. Application of (S:2.5.c) yields

f(⇣) = Ãe�i� P2(1/⇣)

P2(e2i�/⇣)
· P2(e2i�/(q2⇣))

P2(1/(q2⇣))
.

By taking the complex conjugate and applying (S:2.5.a), we see that

f(⇣)f(⇣) = |f(⇣)|2 = 1.

Therefore the image of |⇣| = q is a circular arc of unit radius. A similar procedure may
be applied to show that the circle |⇣| = 1/q is also a circular arc.
We now show that the map is anti-symmetric when the argument is reflected in the

unit circle. Reflecting the argument of f yields

f(1/⇣) = Ãe�i�P2(e2i�/⇣)

P2(1/⇣)
· P2(q2/⇣)

P2(q2e2i�/⇣)
.

Applying (S:2.5.c) to the second fraction gives

f(1/⇣) = Ãei�
P2(e2i�/⇣)

P2(1/⇣)
· P2(1/(q2⇣))

P (e2i�/(q2⇣))
.

Now applying (S:2.5.a) to each P2 yields f(⇣) = f(1/⇣). In other words, reflecting the
point ⇣ in the circle |⇣| = 1 results in a reflection of f in the real axis. Since f contains
a simple pole at ⇣ = 1, the unit disc |⇣| = 1 is mapped to the entire real axis.
A typical centered circular arc wing map is illustrated in figure S:2.9.
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(a) ⇣-plane

z = f(⇣)

(b) z-plane

Figure S:2.9: An example of a centered circular arc wing map (3.6).

S:3. Residues of conformal maps

In this section we provide the residues of each conformal map at the simple pole ⇣ = 1.
The residue of the circular wing map (3.2) is

a1 =
1� q2

i2q
.

The residue of the flat plate map (3.3) at angle of attack ↵ is

a1 = �AP (e2i↵)

L
,

where L =
Q1

k=1(1�q2k)2. In the degenerate case where the angle of attack is zero (3.4),
the residue is

a1 = A.

The residue for the circular arc wing map (3.5) is

a1 =
�AP (�)

P 0(1/�)P (�)� |�|2P 0(�)P (1/�)
.

The residue for the centered circular arc wing map (3.6) is

a1 = �2A

L
· P (ei�)P (�ei�)P (q)P (�q)

P (qei�)P (�qei�)P (�1)
.

S:4. Derivation of kinematic boundary condition for moving wing

In this section we derive the kinematic boundary condition in the case where the
wing executes rigid body motions. We do so by adapting the analysis of Crowdy (2008).
Since the ground is stationary, it must represent a streamline. Therefore, the complex
potential takes constant imaginary part on C0, which we may take to be zero without
loss of generality. However, on the wing, the kinematic boundary condition states that
fluid on the wing must move at the same velocity as the wing itself:

u · n = U · n, (S:4.1)

where u represents the fluid velocity, n represents the outward normal direction, and U
represents the velocity of wing. The normal vector n may be written as �idz/ds where
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s is the arc length, so that the kinematic boundary condition (S:4.1) may be written as

Re


ū(s)⇥�i

dz

ds

�
= Re


Ū(s)⇥�i

dz

ds

�
.

In the physical plane, the complex potential due to the motion of the wing is given by
wM . The kinematic condition therefore becomes

Re


dwM

dz
⇥�i

dz

ds

�
= Re


Ū(s)⇥�i

dz

ds

�
. (S:4.2)

The first term may be simplified by the chain rule to

Re


�i

dwM

ds

�
= Re


�iŪ(s)

dz

ds

�
.

We now note that the wing may be parametrised as

z = id(t) + ⇠(s)e�i↵(t).

The velocity of the wing may therefore be written as

U(s) = iḋ(t)� i↵̇(t)⇠(s)e�i↵(t) = iḋ(t)� i↵̇(t) (z � id(t)) ,

where d represents the (real and positive) distance of the leading edge from the ground,
and ↵ represents the angle of attack. The kinematic condition (S:4.2) then becomes

Re


�i

dwM

ds

�
= Re


�ḋ(t)

dz

ds
+ ↵̇(t) (z̄ � id(t))

dz

ds

�
. (S:4.3)

Noting that

d

ds
|z + id(t)|2 = 2Re


(z̄ � id(t))

dz

ds

�
,

we may now integrate the kinematic condition (S:4.3) with respect to s to obtain

Re [�iwM ] = Re


�ḋ(t)(z + id(t)) +

↵̇(t)

2
|z + id(t)|2

�
+ I, (S:4.4)

for a constant of integration I which will be chosen to comply with a compatibility
condition to be defined later.
We write WM (⇣) = wM (f(⇣)) and translate (S:4.4) into the canonical circular domain

to obtain the condition

Im [WM (⇣)] = Im


�iḋ(t)(f(⇣) + id(t)) + i

↵̇(t)

2
|f(⇣) + id(t)|2

�
+ I ⌘ M

�
⇣, ⇣̄

�
, (S:4.5)

for ⇣ 2 C1. Finally, the constant I is given by enforcing a compatibility condition:

I = � 1

2⇡i

I

C1

Im


�iḋ(t)(f(⇣ 0) + id(t)) + i

↵̇(t)

2
|f(⇣ 0) + id(t)|2

�
d⇣ 0

⇣ 0
. (S:4.6)

Supplementary material references

Crowdy, D. G. 2008 Explicit solution for the potential flow due to an assembly of
stirrers in an inviscid fluid. J. Eng. Math. 62 (4), 333–344.

Crowdy, D. G. 2012 Conformal slit maps in applied mathematics. ANZIAM J. 53 (3),
171–189.



Exact solutions for ground e↵ect – supplementary material 7

Crowdy, D. G., Kropf, E. H., Green, C. C. & Nasser, M. M. S. 2016 The
Schottky-Klein prime function: A theoretical and computational tool for applications.
IMA J. Appl. Math. 81 (3), 589–628.

Crowdy, D. G. & Marshall, J. 2006 Conformal mappings between canonical multiply
connected domains. Comput. Methods Funct. Theory 6 (1), 59–76.


