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We compute the Dirichlet-to-Neumann map for ¢ in an annular cavity, 2, using a Domain
Decomposition method similar to that implemented for the corral geometry. We decompose €2 =
Qs U Qp, where

Qs ={(r,0,2) : 7 <re, 0 €[0,21), 2z € (—hs,0)},
Qp ={(r,0,2) :r1 <r <ry, 0 €[0,27m), 2 € (—hg,—hs)},

with 0 < 11 < 71y < 7o < 00 and 0 < hy < hy. We consider Ag + ¢,. = 0 in €, where A is the
horizontal Laplacian operator. For a given function a(r,#), the boundary conditions for ¢ are

p=a on z=0, 7r<ry, (1a)
6=0 on r=ry, zE€(—hs0), (1b)
Op=0 on r=ry, z€ (—hg —hs), (Lc)
Od=0 on r=ry 2z€ (—hg—hs), (1d)
0.6=0 on z=—hg, r€EI(ry,r), (le)
0.0=0 on z=—h,, 71&(r,79), (1f)

where we assume a bounded solution in the limit » — 0. This configuration is depicted in figure 1.

We then define ¢° and ¢ such that

¢S<T707z)7 (T707Z> € QS:

ér,9,2) = {¢D(r,9,z), (r,0,2) € Qp.

Both ¢° and ¢P satisfy Laplace’s equation in their respective domains, equipped with boundary
conditions consistent with (1). The aim is to solve for ¢ given the Dirichlet data ¢|,—g = a, from
which we determine the corresponding Neumann data, ¢.|.—g. To solve for ¢° and ¢ concurrently,
we introduce the unknown functions b%(r, ) and b (r,6), satisfying

#°=b" and " =b” on z= —h,.
The functions b° and b” are chosen to be consistent with the fluid flow, specifically

b = pP on z=—h,, 1r<r<rnr,
0,0 = 0,07 on z=—h,, 1 <r<Ty,
s
0.¢° =0 on z=—hgs, 1r¢&(r,re).
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Figure 1: Cross-sectional schematic diagram for the Domain Decomposition method. Circles
denote the Ng radial collocation points, of which Np points (black circles) lie in the deep region.
The differential operator is £,,, = 0, +7 710, 4+ .. — (m/r)?. At r = 0, we seek a bounded solution.

We proceed by expanding ¢°, ¢, a, b°, and b” into Fourier angular modes, for example
¢3(r,0,2) =S ¢ (r,2)e™? where i = —1. As ¢° and ¢ are both harmonic functions, it

m=—0oQ

is necessary to solve

qubfn =0, for (r,2)€]0,7) X (—hs,0),
Em@lz =0, for (r,z)€ (r1,r2) X (—hg,—hs),

where L, = 0, + 7710, + 0.. — (m/r)? is Laplace’s operator for angular mode m. As depicted
in figure 1, the boundary conditions for the shallow region are ¢° = 0 on r = ry, ¢°, = a,, on

z=0, ¢ =b% on z = —h,, with ¢> bounded as r — 0. Similarly, we require 9,¢2 =0 on r =y,
0,02 = 0onr =1y, ¢P = b2 on 2 = —h,, 0,62 = 0 on 2 = —hy, and boundedness of ¢2 as
r — 0.

We first solve for ¢° and ¢ before determining b° and b2 according to the matching condi-
tions. To solve £,,¢7 = 0 with respect to the radial boundary conditions, we employ the Hankel
Transform ¢3 (r,z) = P G (2)Im (k) (similarly for b5, and a,,), where J,, is the Bessel
function of the first kind of order m. The distinct wavenumbers k,,, > 0 satisfy the Dirichlet
boundary condition (1a) at r = ru,, specifically J,,(kmpreo) = 0. The analytic solution for ¢ (r, 2)
is then

g = sinh(Kkpmp(z 4+ hs)) g sinh(kppz)
- E — - 2
Ol 2) {a’"” sinh(khs) P hs) T (Fmpr) )

p=1

For solving for ¢, we now modify the method adopted for the circular corral since one must
also consider the Bessel function Y,, of the second kind of order m (as r; > 0). Specifically, we
define the family of cylinder functions C,,(0,9) = Jn(0) cos(m?) + Y (o) sin(nd?) for o > 0 and
v € (0,1). We express

Pr(r,z) = Z¢D m(EmpTs Vmp),
p=1

where the pair (&, Ump) is chosen to satisfy the radial boundary conditions (1c)—(1d), namely

I (Empr1) cO8(Dpmpm) + Y1, (§mpr1) sin(pmpm) = 0, (3a)
I (Empra) co8(Dmpm) + Y1, (Empr2) sin(dm,m) = 0. (3b)



We first note that the pair ({y1, 1) = (0,0) corresponds to the unit eigenfunction. To compute
the remaining pairs (&,,p, Ump) for &, > 0, we eliminate 9,,, from (3) to obtain a single equation
for &, given r; and r9, namely

J;n(émprﬁY:n(gmpW) - J;n(@npm)Y;n(fmp?ﬂl) =0.

The discrete values of &, may be computed numerically, where we consider the order 0 < &,,; <
Ema < .... Given &, > 0, we then use (3a) to determine 9,,, € (0, 1), namely

! ng(gmph)) (mod 1).

Upp = —— arctan [ ——2+-2
P ™ (Y/ (5mp7ﬂ1>
Through consideration of the boundary conditions for ¢ | we then obtain the well-known DtN

map for finite depth, namely
0.0 (—hg) = b & tanh (& (ha — h)).

mp?

Hence,
8.0 ( Z by pSmp tan (&np(ha — Pis))Con (Empr, D) (4)
To match the velocity potent1a1 along z = —hyg for each angular mode m, we utilise Ng radial
collocation points p;, where 0 < p; < p < ... < png < Too, Which are defined similarly to the main

text. To satisfy the velocity continuity between the domains Qg and €2p, as well as the no-flux
condition through the base of the corral (see equation (1f)), at each radial collocation point, p;,
we require

b;jl = bﬁ, pj € (r1,72), (5a)
8z¢§1 = z¢an pj € (r1,r2), 2= —hs, (5b)
8Z¢rsn = 07 Pj gé (7“1,7’2), = _hS' (SC)

Following a similar procedure to the corral problem, Np < Ng collocation points satisfy p; €
(r1,73). For a well-posed problem, we must similarly truncate the wavenumbers ky,, and &, to
p < Ng and p < Np in the shallow and deep regions, respectively.

To satisfy conditions (5b)—(5¢), we evaluate (2)—(4) at the collocation points, yielding a system

of Ns equations for b5, ... ,biNS and b2, ... bE
Ng
kmpdim (kmpp;)
> (amp — b3, cosh(kphs)) W
—1 mp!ls

{Z;V% anlpgmp tanh(gmp(hd - hs))cm<€mppj> ﬂmp)a pj € (Th 7"2)7 (6)

Oa Py ¢ (7"1,7‘2).

To close the system, the continuity condition (5a) gives

Ng
Z bfanm(kmppJ Z by m(&mpPs, Ump),  Vpj € (r1,72). (7)
p=1

The system of equations (6)—(7) may be expressed as a system of size (Ng + Np) and inverted for
by, and bl . Equation (2) then determines the Dirichlet-to-Neumann map

ngbfnp(()) = Ky (@imyp coth (Kmphs) — bf;lp cosech (kpphs)).



