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Geometry

We consider a channel of width 2L, passing through the centre of a doubly-periodic domain (z,y) € Qy =
[—Lga, L] x [=Ly, Ly]. For x € (=L, L.), the fluid depth is hy and for z € Q¢\(—L, L.) the fluid depth
is hg, where hgy < hs. The velocity potential ¢ = ¢(x,y, z) satisfies periodic conditions at z = +L, and
y = £L,, and no-penetration conditions through the topography. Within the domain, ¢ satisfies Laplace’s
equation

¢xx + (Z)yy + (z)zz = 0.

We consider the case where ¢|,—g = a (where a(x,y) is given) and we need to compute the Dirichlet-to-
Neumann map 9,¢|,—o.

We note that when the channel width parameter L. < L, satisfies L, < L., the topography may be
regarded as a deep trench about z = 0. However, when L. < L., the doubly-periodic boundary conditions
imply that one may instead think of the domain as a shallow ridge about z = L.

Domain decomposition

We decompose the domain, €2, into two regions: Q = Qg U Qp, where (z,y,z) € Qg = Qo x [—hs, 0] and
(z,y,2) € Qp = [~Le, Le] x [~ Ly, Ly] X [~hg, —hs]. We denote the velocity potential as ¢ in the shallow
region, g, and ¢ in the deep region, Qp. We define boundary conditions ¢ |.=0 = a, while we introduce
unknown functions b°(x,y) and b (x,y) satisfying ¢° = b% and ¢P = bP on z = —h,.

To match the two domains, we introduce collocation points x; (j = 1,...,N;) and y; (I = 1,...,Ny).
As with a standard discrete Fourier transform, we define

L
zj=—Ly,+2(j —1)=—=

Ny
for j = 1,..., N, (and similarly for y;), where we ensure that each step lies at a collocation point, namely
xjy = —Lc and xjn = L, for some 1 < j' < j"” < N, yielding Np = j” — j' — 1 collocation points in the deep

region, which excludes the steps. As discussed in the main text, this approach improves the convergence of
the numerical method. By defining the set D = {j’ +1,...,j” — 1} so that if j € D then —L. < z; < L,
the matching conditions are (for all [ =1,..., Ny):

bs(xjayl) = bD(xjayl)a \V/] € D7 (13)
0:0° (x5, y1, —hs) = 0:0" (xj,y1, —hs), Vj € D, (1b)
9.0 (5,91, —hs) = 0, Vj & D, (1c)

corresponding to continuity of the horizontal and vertical velocity between the domains, and the no-flux
boundary condition through the base of the shallow layer.

We proceed to analytically solve Laplace’s equation in each of the two domains, g and Qp, using
discrete Fourier transforms.



Shallow layer

In the shallow layer Qg, we perform a discrete Fourier transform to ¢° and b°, yielding

N Ny Nz Ny
0% (@,y,2) = DD Gn()®i(@)Wily) and b(w,y) =3 Y bi®;(e
J=11=1 j=11=1

where we utilise two families of basis functions:

xp(ik;z), kj=mj/Ly for j=—N;/2,...,(Ng/2—1),
\Ij](y): Xp(iij)7 gj:ﬂj/Ly for j=- y/2a'~'7(Ny/2_1)'

Substituting into Laplace’s equation yields
0z205 = knd5, Yz € (—hs,0),

where kj = ,/k:]z +§l2. Similarly, the boundary conditions give qﬁfl = aj on z = 0 (where the Fourier
coefficients aj; of a are defined in the same manner as bfl) and (bfl = bfl on z = —h,. Hence,

smh(kﬂ(z +hs)) g sinh(kji2)

¢ 1(z) = sinh(k;hs) jlsmh(kﬂh )’

(2)
where the case kj; = 0 can be derived using L’hopital’s rule. By differentiating, we thus obtain

0:¢5(0) =
z¢jl( )

(ajl coth(kjihs) — bfl cosech(kjlhs)),

1(aj; cosech(kjihs) — b3 coth(kjihs)).

k;
kj J

Deep region

In the deep region Qp, we perform a similar spectral decomposition for ¢ and b”, namely

Np Ny Np Ny
x Y Ys 2 Zz(b ( )7 bD({L‘,y) = ZZ[)JIZH](JJ)\I/Z
J=11=1 J=11=1

where II;(x) = cos(kj(x + L)) and k; = jn/(2L.) for j = 1,..., Np. Solving Laplace’s equation with
respect to the boundary conditions yields the well-known Dirichlet-to-Neumann map for finite depth

02071 (~hs) = & tanh(&ju(ha — hs))bj, (3)

where &1 = /w5 + &7

System of equations

To satisfy the matching condition on the horizontal velocity, given by equation (1a), for given Dirichlet data
aj;, we require bfl and bﬁ such that

Nz NZJ ND Ny
DD P Wilyn) = Y > bRTL (@) Vilyn) (4)
Jj=11=1 j=11=1



for all m € D and all 1 <n < N,. Furthermore, to satisfy the conditions for the vertical velocity (given by
equations (1b)—(1c)) at the collocation points (¥, ), we require

Z Z kji (ajl cosech(kjihs) — bfl coth(k‘jlhs))@j (m) ¥ (yn)
j=11=1

_ {zgziﬁlbﬁfﬂmnh@(hd—hs>>nj<xm>\m<yn>, vmeD, o

0, Vm ¢ D.

Combining the N, (N, + Np) equations (4)-(5), we may solve for the N,(N, + Np) unknowns. However,
the matrix inversion is prohibitively expensive for large N, or N,,.

System reduction

To reduce system (4)—(5) to a series of smaller problems, we recall the orthogonality relation

Ny
Z lIjl(yn)\IlZ(yn) = Nyélp
n=1

for —Ny/2 < l,p < (Ny/2 — 1), where §;, is the Kronecker-delta. Hence, by applying the weighted sum
ZnN:1 W7 (yn) to both sides of (4), we obtain that for each | = 1,..., N,:

> 650 (wm) = > bOI(zy), Ym e D. (6)
J=1 j=1
Similarly, (5) yields
S No pD¢ o tanh(E(hg — hs))IL; Vm €D
Zkﬂ(aﬂ cosech(kjlhs)—bflcoth(kﬂhs))cpj(xm) _ 23:1 ]lfgl an (fgl( d s)ILi(xm), m e D, o

Hence, system (6)—(7) gives N, problems each with (N, + Np) unknowns (bfl for j=1,..., N, and ble for
j € D), representing a significant computational saving.
Following the computation of bfl and ble for given aj;, the Dirichlet-to-Neumann map is

0.90;1(0) = kj (aﬂ coth(kjihs) — bfl cosech(kjlhs)).



