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We compute the Dirichlet-to-Neumann map for φ in an annular cavity, Ω, using a Domain
Decomposition method similar to that implemented for the corral geometry. We decompose Ω =
ΩS ∪ ΩD, where

ΩS = {(r, θ, z) : r < r∞, θ ∈ [0, 2π), z ∈ (−hs, 0)},
ΩD = {(r, θ, z) : r1 < r < r2, θ ∈ [0, 2π), z ∈ (−hd,−hs)},

with 0 < r1 < r2 < r∞ < ∞ and 0 < hs < hd. We consider ∆φ + φzz = 0 in Ω, where ∆ is the
horizontal Laplacian operator. For a given function a(r, θ), the boundary conditions for φ are

φ = a on z = 0, r < r∞, (1a)

φ = 0 on r = r∞, z ∈ (−hs, 0), (1b)

∂rφ = 0 on r = r1, z ∈ (−hd,−hs), (1c)

∂rφ = 0 on r = r2, z ∈ (−hd,−hs), (1d)

∂zφ = 0 on z = −hd, r ∈ (r1, r2), (1e)

∂zφ = 0 on z = −hs, r /∈ (r1, r2), (1f)

where we assume a bounded solution in the limit r → 0. This configuration is depicted in figure 1.
We then define φS and φD such that

φ(r, θ, z) =

{
φS(r, θ, z), (r, θ, z) ∈ ΩS,

φD(r, θ, z), (r, θ, z) ∈ ΩD.

Both φS and φD satisfy Laplace’s equation in their respective domains, equipped with boundary
conditions consistent with (1). The aim is to solve for φ given the Dirichlet data φ|z=0 = a, from
which we determine the corresponding Neumann data, φz|z=0. To solve for φS and φD concurrently,
we introduce the unknown functions bS(r, θ) and bD(r, θ), satisfying

φS = bS and φD = bD on z = −hs.

The functions bS and bD are chosen to be consistent with the fluid flow, specifically

bS = bD on z = −hs, r1 < r < r2,

∂zφ
S = ∂zφ

D on z = −hs, r1 < r < r2,

∂zφ
S = 0 on z = −hs, r /∈ (r1, r2).
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Figure 1: Cross-sectional schematic diagram for the Domain Decomposition method. Circles
denote the NS radial collocation points, of which ND points (black circles) lie in the deep region.
The differential operator is Lm = ∂rr+r−1∂r+∂zz−(m/r)2. At r = 0, we seek a bounded solution.

We proceed by expanding φS, φD, a, bS, and bD into Fourier angular modes, for example
φS(r, θ, z) =

∑∞
m=−∞ φ

S
m(r, z)eimθ, where i2 = −1. As φS and φD are both harmonic functions, it

is necessary to solve

LmφSm = 0, for (r, z) ∈ [0, r∞)× (−hs, 0),

LmφDm = 0, for (r, z) ∈ (r1, r2)× (−hd,−hs),

where Lm = ∂rr + r−1∂r + ∂zz − (m/r)2 is Laplace’s operator for angular mode m. As depicted
in figure 1, the boundary conditions for the shallow region are φSm = 0 on r = r∞, φSm = am on
z = 0, φSm = bSm on z = −hs, with φSm bounded as r → 0. Similarly, we require ∂rφ

D
m = 0 on r = r1,

∂rφ
D
m = 0 on r = r2, φ

D
m = bDm on z = −hs, ∂zφDm = 0 on z = −hd, and boundedness of φDm as

r → 0.
We first solve for φSm and φDm before determining bSm and bDm according to the matching condi-

tions. To solve LmφSm = 0 with respect to the radial boundary conditions, we employ the Hankel
Transform φSm(r, z) =

∑∞
p=1 φ

S
mp(z)Jm(kmpr) (similarly for bSm and am), where Jm is the Bessel

function of the first kind of order m. The distinct wavenumbers kmp > 0 satisfy the Dirichlet
boundary condition (1a) at r = r∞, specifically Jm(kmpr∞) = 0. The analytic solution for φSm(r, z)
is then

φSm(r, z) =
∞∑
p=1

[
amp

sinh(kmp(z + hs))

sinh(kmphs)
− bSmp

sinh(kmpz)

sinh(kmphs)

]
Jm(kmpr). (2)

For solving for φDm, we now modify the method adopted for the circular corral since one must
also consider the Bessel function Ym of the second kind of order m (as r1 > 0). Specifically, we
define the family of cylinder functions Cm(%, ϑ) = Jm(%) cos(πϑ) + Ym(%) sin(πϑ) for % > 0 and
ϑ ∈ (0, 1). We express

φDm(r, z) =
∞∑
p=1

φDmp(z)Cm(ξmpr, ϑmp),

where the pair (ξmp, ϑmp) is chosen to satisfy the radial boundary conditions (1c)–(1d), namely

J′m(ξmpr1) cos(ϑmpπ) + Y′m(ξmpr1) sin(ϑmpπ) = 0, (3a)

J′m(ξmpr2) cos(ϑmpπ) + Y′m(ξmpr2) sin(ϑmpπ) = 0. (3b)
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We first note that the pair (ξ01, ϑ01) = (0, 0) corresponds to the unit eigenfunction. To compute
the remaining pairs (ξmp, ϑmp) for ξmp > 0, we eliminate ϑmp from (3) to obtain a single equation
for ξmp given r1 and r2, namely

J′m(ξmpr1)Y
′
m(ξmpr2)− J′m(ξmpr2)Y

′
m(ξmpr1) = 0.

The discrete values of ξmp may be computed numerically, where we consider the order 0 ≤ ξm1 <
ξm2 < . . .. Given ξmp > 0, we then use (3a) to determine ϑmp ∈ (0, 1), namely

ϑmp = − 1

π
arctan

(
J′m(ξmpr1)

Y′m(ξmpr1)

)
(mod 1).

Through consideration of the boundary conditions for φDmp, we then obtain the well-known DtN
map for finite depth, namely

∂zφ
D
mp(−hs) = bDmpξmp tanh(ξmp(hd − hs)).

Hence,

∂zφ
D
m(r,−hs) =

∞∑
p=1

bDmpξmp tanh(ξmp(hd − hs))Cm(ξmpr, ϑmp). (4)

To match the velocity potential along z = −hs for each angular mode m, we utilise NS radial
collocation points ρj, where 0 ≤ ρ1 < ρ2 < . . . < ρNS

< r∞, which are defined similarly to the main
text. To satisfy the velocity continuity between the domains ΩS and ΩD, as well as the no-flux
condition through the base of the corral (see equation (1f)), at each radial collocation point, ρj,
we require

bSm = bDm, ρj ∈ (r1, r2), (5a)

∂zφ
S
m = ∂zφ

D
m, ρj ∈ (r1, r2), z = −hs, (5b)

∂zφ
S
m = 0, ρj /∈ (r1, r2), z = −hs. (5c)

Following a similar procedure to the corral problem, ND < NS collocation points satisfy ρj ∈
(r1, r2). For a well-posed problem, we must similarly truncate the wavenumbers kmp and ξmp to
p ≤ NS and p ≤ ND in the shallow and deep regions, respectively.

To satisfy conditions (5b)–(5c), we evaluate (2)–(4) at the collocation points, yielding a system
of NS equations for bSm1, . . . , b

S
mNS

and bDm1, . . . , b
D
mND

:

NS∑
p=1

(
amp − bSmp cosh(kmphs)

)kmpJm(kmpρj)

sinh(kmphs)

=

{∑ND

p=1 b
D
mpξmp tanh(ξmp(hd − hs))Cm(ξmpρj, ϑmp), ρj ∈ (r1, r2),

0, ρj /∈ (r1, r2).
(6)

To close the system, the continuity condition (5a) gives

NS∑
p=1

bSmpJm(kmpρj) =

ND∑
p=1

bDmpCm(ξmpρj, ϑmp), ∀ρj ∈ (r1, r2). (7)

The system of equations (6)–(7) may be expressed as a system of size (NS +ND) and inverted for
bSmp and bDmp. Equation (2) then determines the Dirichlet-to-Neumann map

∂zφ
S
mp(0) = kmp

(
amp coth(kmphs)− bSmp cosech(kmphs)

)
.
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