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Geometry

We consider a channel of width 2Lc passing through the centre of a doubly-periodic domain (x, y) ∈ Ω0 =
[−Lx, Lx] × [−Ly, Ly]. For x ∈ (−Lc, Lc), the fluid depth is hd and for x ∈ Ω0\(−Lc, Lc) the fluid depth
is hs, where hd < hs. The velocity potential φ = φ(x, y, z) satisfies periodic conditions at x = ±Lx and
y = ±Ly, and no-penetration conditions through the topography. Within the domain, φ satisfies Laplace’s
equation

φxx + φyy + φzz = 0.

We consider the case where φ|z=0 = a (where a(x, y) is given) and we need to compute the Dirichlet-to-
Neumann map ∂zφ|z=0.

We note that when the channel width parameter Lc < Lx satisfies Lc � Lx, the topography may be
regarded as a deep trench about x = 0. However, when Lc . Lx, the doubly-periodic boundary conditions
imply that one may instead think of the domain as a shallow ridge about x = Lx.

Domain decomposition

We decompose the domain, Ω, into two regions: Ω = ΩS ∪ ΩD, where (x, y, z) ∈ ΩS = Ω0 × [−hs, 0] and
(x, y, z) ∈ ΩD = [−Lc, Lc] × [−Ly, Ly] × [−hd,−hs]. We denote the velocity potential as φS in the shallow
region, ΩS , and φD in the deep region, ΩD. We define boundary conditions φS |z=0 = a, while we introduce
unknown functions bS(x, y) and bD(x, y) satisfying φS = bS and φD = bD on z = −hs.

To match the two domains, we introduce collocation points xj (j = 1, . . . , Nx) and yl (l = 1, . . . , Ny).
As with a standard discrete Fourier transform, we define

xj = −Lx + 2(j − 1)
Lx

Nx

for j = 1, . . . , Nx (and similarly for yl), where we ensure that each step lies at a collocation point, namely
xj′ = −Lc and xj′′ = Lc for some 1 < j′ < j′′ < Nx, yielding ND = j′′− j′− 1 collocation points in the deep
region, which excludes the steps. As discussed in the main text, this approach improves the convergence of
the numerical method. By defining the set D = {j′ + 1, . . . , j′′ − 1} so that if j ∈ D then −Lc < xj < Lc,
the matching conditions are (for all l = 1, . . . , Ny):

bS(xj , yl) = bD(xj , yl), ∀j ∈ D, (1a)

∂zφ
S(xj , yl,−hs) = ∂zφ

D(xj , yl,−hs), ∀j ∈ D, (1b)

∂zφ
S(xj , yl,−hs) = 0, ∀j /∈ D, (1c)

corresponding to continuity of the horizontal and vertical velocity between the domains, and the no-flux
boundary condition through the base of the shallow layer.

We proceed to analytically solve Laplace’s equation in each of the two domains, ΩS and ΩD, using
discrete Fourier transforms.
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Shallow layer

In the shallow layer ΩS , we perform a discrete Fourier transform to φS and bS , yielding

φS(x, y, z) =

Nx∑
j=1

Ny∑
l=1

φSjl(z)Φj(x)Ψl(y) and bS(x, y) =

Nx∑
j=1

Ny∑
l=1

bSjlΦj(x)Ψl(y),

where we utilise two families of basis functions:

Φj(x) = exp(ikjx), kj = πj/Lx for j = −Nx/2, . . . , (Nx/2− 1),

Ψj(y) = exp(iξjy), ξj = πj/Ly for j = −Ny/2, . . . , (Ny/2− 1).

Substituting into Laplace’s equation yields

∂zzφ
S
jl = k2jlφ

S
jl, ∀z ∈ (−hs, 0),

where kjl =
√
k2j + ξ2l . Similarly, the boundary conditions give φSjl = ajl on z = 0 (where the Fourier

coefficients ajl of a are defined in the same manner as bSjl) and φSjl = bSjl on z = −hs. Hence,

φSjl(z) = ajl
sinh(kjl(z + hs))

sinh(kjlhs)
− bSjl

sinh(kjlz)

sinh(kjlhs)
, (2)

where the case kjl = 0 can be derived using L’hôpital’s rule. By differentiating, we thus obtain

∂zφ
S
jl(0) = kjl

(
ajl coth(kjlhs)− bSjl cosech(kjlhs)

)
,

∂zφ
S
jl(−hs) = kjl

(
ajl cosech(kjlhs)− bSjl coth(kjlhs)

)
.

Deep region

In the deep region ΩD, we perform a similar spectral decomposition for φD and bD, namely

φD(x, y, z) =

ND∑
j=1

Ny∑
l=1

φDjl(z)Πj(x)Ψl(y), bD(x, y) =

ND∑
j=1

Ny∑
l=1

bDjlΠj(x)Ψl(y),

where Πj(x) = cos(κj(x + Lc)) and κj = jπ/(2Lc) for j = 1, . . . , ND. Solving Laplace’s equation with
respect to the boundary conditions yields the well-known Dirichlet-to-Neumann map for finite depth

∂zφ
D
jl(−hs) = ξjl tanh(ξjl(hd − hs))bDjl , (3)

where ξjl =
√
κ2j + ξ2l .

System of equations

To satisfy the matching condition on the horizontal velocity, given by equation (1a), for given Dirichlet data
ajl, we require bSjl and bDjl such that

Nx∑
j=1

Ny∑
l=1

bSjlΦj(xm)Ψl(yn) =

ND∑
j=1

Ny∑
l=1

bDjlΠj(xm)Ψl(yn) (4)
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for all m ∈ D and all 1 ≤ n ≤ Ny. Furthermore, to satisfy the conditions for the vertical velocity (given by
equations (1b)–(1c)) at the collocation points (xm, yn), we require

Nx∑
j=1

Ny∑
l=1

kjl
(
ajl cosech(kjlhs)− bSjl coth(kjlhs)

)
Φj(xm)Ψl(yn)

=

{∑ND
j=1

∑Ny

l=1 b
D
jlξjl tanh(ξjl(hd − hs))Πj(xm)Ψl(yn), ∀m ∈ D,

0, ∀m /∈ D.
(5)

Combining the Ny(Nx + ND) equations (4)–(5), we may solve for the Ny(Nx + ND) unknowns. However,
the matrix inversion is prohibitively expensive for large Nx or Ny.

System reduction

To reduce system (4)–(5) to a series of smaller problems, we recall the orthogonality relation

Ny∑
n=1

Ψl(yn)Ψ∗p(yn) = Nyδlp

for −Ny/2 ≤ l, p ≤ (Ny/2 − 1), where δlp is the Kronecker-delta. Hence, by applying the weighted sum∑N
n=1 Ψ∗p(yn) to both sides of (4), we obtain that for each l = 1, . . . , Ny:

Nx∑
j=1

bSjlΦj(xm) =

ND∑
j=1

bDjlΠj(xm), ∀m ∈ D. (6)

Similarly, (5) yields

Nx∑
j=1

kjl
(
ajl cosech(kjlhs)−bSjl coth(kjlhs)

)
Φj(xm) =

{∑ND
j=1 b

D
jlξjl tanh(ξjl(hd − hs))Πj(xm), ∀m ∈ D,

0, ∀m /∈ D.
(7)

Hence, system (6)–(7) gives Ny problems each with (Nx +ND) unknowns (bSjl for j = 1, . . . , Nx and bDjl for
j ∈ D), representing a significant computational saving.

Following the computation of bSjl and bDjl for given ajl, the Dirichlet-to-Neumann map is

∂zφjl(0) = kjl
(
ajl coth(kjlhs)− bSjl cosech(kjlhs)

)
.
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