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A. Text Appendix 

A.1 Relationship between the aerated root vortex flow and other vortex dominated flows 

There is a general similarity among oscillatory transitional vortex flows. Below, the relationship 
between the aerated root vortex, flapping foil propulsion vortex, cylinder self-oscillation induced by wake 
vortex flows and the delta wing leading edge vortex, is summarized. The background explanation of what 
self-regulation is, and the relevance to entrainment in oceanic surface waves are also given. 

The root vortex flow uses the same apparatus as in our flapping foil propulsion experiments, but at the 
surface and having some entrainment. In the measurements for the propulsion case, a surface plate is used 
to prevent entrainment and simulate flapping in deeper waters where the effects of the free surface is 
negligible. The leading edge of the foil is rounded, but the trailing edge is sharp. The root vortex is 
produced at the trailing edge. The trailing edge has a higher velocity gradient across at a geometrically 
well defined edge. Near the free surface, the trailing edge vortex is produced first and dominates the foil 
angle of attack, subsequently weakening the leading edge vortex. When first formed, foil twisting makes 
the leading edge vortex uniform along the span which otherwise is conical due to increasing foil velocity 
with span (Bandyopadhyay et al. 2012; Bandyopadhyay 2015). The weak leading edge vortex produced 
down span is shown in figure SI-TA-4. In the propulsion case ‘deeper’ from the free surface, the trailing 
edge vortex is weak. A jet is produced both near or deeper from the free surface. 

The resonant transitional cylinder wake (Albar de & Monkewitz 1992) has a Kármán vortex wake 
while the wake in the root vortex and flapping foil propulsion, the wake is a jet consisting of reverse 
Kármán vortices much as in a fish. In the latter, the foil kinematics is carefully selected to ensure the 
production of a jet (Triantafyllou & Triantafyllou 1995).  

Delta wings have sharp leading edges like the trailing edge of the present foil. The flapping trailing 
edge lift mechanism can be compared with the delta wing lift mechanism. The latter is given by 
(Polhamus 1966):  

  (2.6) 

where,  is total lift coefficient,  is the potential flow linear component of , and  is the 

nonlinear vortex lift coefficient. A similar breakdown is shown in figure 5(Inset 2), which is from the 
context of flapping foil propulsion (Bandyopadhyay et al. 2008a). The inset may be compared with the 
lift figures in Polhamus (1966) which are remarkably similar. Hence, equation 2.6 applies to both flows. 
In section 3.5 (of main article), the root vortex lift is modeled using equation 2.6. This modeling is 
justified if we attribute the entire foil lift to the trailing edge vortex. 

In terms of entrainment, at a given f and other foil kinematic parameters: 

é

CL = CLP + CLV

CL CLP CL CLV
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 ,  (2.7) 

where  is the average of the total entrainment of atmospheric air per cycle of oscillation. But, in a given 

cycle,  is the root vortex entrainment at the trailing edge, and  is the foil boundary layer leading 

edge entrainment. Since the input torque is the same cycle to cycle, . When f = 0.75 Hz,  

no root vortex is produced and . Entrainment increases with input torque, that is f. Then, 

. In the context of figure SI-DA-4, at f = 1 Hz, the root and foil apportioning lies 

mostly near one side of the graph. But at f = 1.25 Hz, the cycle to cycle apportioning moves over the 

entire range of the graph linked by their history. When f =1 Hz, in most cycles, . When f 

=1.25 Hz, both , and can be of similar magnitude due to the role played by translating 

small secondary surface vortices affecting the orientation and size of the main funnel pierced by the foil. 

See section 3.10 (see below and main article) for the concatenated apportioning of  into  and  

in a cycle since . Hence, on average, the flow has a lower degree of freedom and is less 
chaotic when f = 1 Hz. 

As stated, the aerated root vortex is formed at the sharp foil trailing edge. The delta wing vortex is 
formed at the sharp leading edge. The flapping foil propulsion vortex is formed at the rounded leading 
edge. Vortex bursting is seen only in the aerated root vortex and the delta wing but not in the leading edge 
vortex of the flapping foil. This suggests a greater influence of Rossby number over Reynolds number in 
salient edge separation vortex. 

The apparatus in figure 1 (in main article) was originally built for making measurements to formulate 
the force and moment control laws for flapping propulsion (Menozzi et al. 2008). Right after the 
apparatus was built, the first trials revealed the vivid formation of the root vortices because no top plate 
was installed in order to prevent entrainment (Bandyopadhyay et al. 2012). It was not yet clear what they 
were, nor the fact that they were bursting or that the vortex had any elastic property sustaining Kelvin 
waves. It required research on self-regulation and control: open-loop linear control and olivo-cerebellar 
dynamics non-linear control, to understand the systemic relationship of natural oscillatory phenomena. 
Closely working with olivo-cerebellar control specialist Professor Rodolfo Llinas of the Neuroscience 
Department at New York University Medical School (Kazantsev et al. 2004; Bandyopadhyay et al. 
2008b) caused the author to realize that dynamically, many transitional natural flows and processes are 

similarly self-regulating. The examples are:  the wake flow of vortex induced vibrating cylinder (Albar

de & Monkewitz 1992; Skop & Balasubramanian 1997), flapping foil propulsion wake (von Ellenrieder et 
al. 2008; Bandyopadhyay et al. 2012; Bandyopadhyay et al. 2013), turbulent boundary layer control in 
the skins of sharks and dolphins (Bandyopadhyay & Hellum 2014), the trajectory of the motion of bats in 
an obstacle filled room (Bandyopadhyay et al. 2013), the trajectory of the flexible cilia beating of a 

Q̄ = Qroot + Qfoil = constant

Q̄

Qroot Qfoil

Q̄ = constant

Q̄ = 0

Q̄f=1.25Hz > Q̄f=1Hz

Qroot > > Qfoil

Qroot, Qfoil > 0

Q̄ Qroot Qfoil

Q̄ = constant

é
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paramecium in water (Bandyopadhyay & Hansen 2013), and the inferior-olive neuron based control of 
the muscles involved in the motions of animals from rats to humans (Kazantsev et al. 2004) and their 
implementation in an underwater swimming platform with flapping propulsion (Bandyopadhyay et al. 
2008b). The agreement between the temporal or the spatiotemporal measurements, as the case may be, 
and the modeling (using FitzHugh-Nagumo—a derivative of the Hodgkin-Huxley models, or the Stuart-
Landau, or the van Der Pol equations) is impressive. The spectrum of the examples of oscillatory flows is 
broad. Instead of focusing on the differences, the focus then shifted toward understanding the similarities 
of the properties of self-regulation between the phenomena. The differences were confined to the 
calibration of the variables special to the phenomenon. Such an approach to modeling based on self-
regulation (explained below) is demanding in physical insight but fruitful in control. The practical 
application of such control will have a much smaller time constant of response to commands which is not 
possible in conventional linear engineering controls where proportional, integral and differential (PID) 
methods are applied to calibrations of time-averaged state variables. However, such nonlinear control is 
limited to oscillatory situations. 

Self-regulation may be explained as follows (Khalil 1996; Bandyopadhyay & Leinhos 2013). Consider 

a time-dependent linear oscillator given by , where  is the state variable, a dot 

represents ordinary time derivative,  is a damping parameter, and  is the frequency of oscillation of the 

system. The solution converges when , diverges when , and oscillates when . Since the 

equation is linear, all of the behavior is scaled proportionate to the initial conditions. Therefore, a 
perturbation in the initial conditions is transmitted, without any attenuation, to the amplitude of the 
resulting dynamics in a proportionate manner. Now, modify this linear system to a nonlinear system 

, where  such that  and . For small values of , the 

nonlinearity  approximates the negative constant; for large , the nonlinearity dominates. When  starts 

small and increases, the solutions increase, and as  becomes large, the solutions decrease. This 
phenomenon leads to a sustained periodic set of oscillations that is essentially a nonlinear process where 
all solutions, in the limit, converge to the periodic cycle, called limit cycle. As observed physically by 

Hodgkin, irrespective of the value of the state variable x, the frequency  remains in a narrow band (see 

figure 6 (Class 2) in Izhikevich 2000). If the system is disturbed, it automatically introduces corrective 
actions via its nonlinear components whereby the oscillations are maintained. Consequently, auto-
catalytic properties are produced. This is termed self-regulation. Disturbance rejection properties improve 
if damping (friction) is reduced. Sensors and controllers are not needed to maintain the set reference 

condition. In engineering, it is convenient to control force due to flapping foils by changing  (= ). 

But in natural systems such as swimming and flying animals, this is not possible. Each animal has its own 

characteristic  and damping:  . Commonly for flapping propulsion,  is expressed non-

dimensionally, as Strouhal number, . Here,  is the amplitude of foil oscillation and  is the 

··x + 2ζω ·x + ω2x = 0 x

ζ ω

ζ > 0 ζ < 0 ζ = 0

··x + f (x) ·x + ω2x = 0 f (x) = aox2 − 2ζoω ao > 0 ζo > 0 x

f x x

x

ω

ω 2π f

ω ao, ζo ω

St = fA /U A U
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forward velocity (Triantafyllou & Triantafyllou 1995). Also, note that the phase maps ( ), ( ), … are 
said to be ‘‘locked-in’’ if each cycle of the foil’s oscillation produces initial conditions that produce the 
same phase map over the next cycle. The departure from self-regulation therefore is a measure of the 
wasteful friction in an oscillatory flow. 

Lubin & Glockner’s (2015) simulation of ‘pipes’ near the shores, with aerated transverse vortices, can 
be approximated as the two-dimensional version of the conical DH (Double Helix) root vortices with 
transverse Taylor air tubes. The two-dimensionality is an indication that the former is not stretched 
(Theodorsen 1952) and does not burst. The apparatus in figure 1 (in the main article) can be seen as a 
means of producing oscillatory weak-strong coupled waves. Further generalizations are possible. In the 
wind-induced breaking waves on a sea surface, the predominantly strong rolling surface waves would 
resonantly couple with weak orthogonal waves. This coupling, being the path of least resistance for stress 
relief, would generate aerated surface vortices quasi-periodically in space and time. After being stretched 
maximally allowing turbulence intensification, and subsequently being suddenly relieved, the vortices 
would burst producing bubbles. In tentative support in section 3.2 (see main article and SI below), the 
estimates of the resonant frequencies of the bubbles (the so called ringing) and of the bursting vortex 
tubes are compared with the buoy measurements of sound emitted by the bubbles formed due to the 
splashes in wind-induced breaking waves in the sea. 

A.2 Flow parameters 

The foil forces are proportional to the square of flapping frequency f in the fully submerged case. The 
slanted root vortex is not formed at 0.75 Hz; a transitional vortex is formed at 1.0 Hz; and the vortex is 
mostly turbulent at 1.25 Hz. With increasing f, the foil needs to be located at greater submergence in order 
to avoid an intake vortex. 

Using the helicopter rotor model, estimate the induced velocity  as , where  is 

the cycle-averaged force (N) in the forward direction,  is the density (kg/m3),  

( ) is the foil swept area (Wakeling & Ellington 1997),  is the outer foil radius, 

and  is the inner foil radius. Since , . Because the foil motion creates surface waves, 

gravity is the stabilizing force and inertia is the destabilizing force. Therefore, their ratio is given by the 

Froude number , where  is acceleration due to gravity, and  is the chord of the foil 

(NACA 0012 section, c = 0.1 m, span = 0.30 m), which is a measure of the maximum blockage (the 
maximum thickness of the foil and the stem holding the foil are similar:  this dimension gives the 

·x , x ··x, ·x

Uind Uind =
F̄x

2ρAs
F̄x

ρ As

=
1
9

π(ro2 − ri2) (m2) ro

ri F̄x ∝ f 2 Uind ∝ f

Fr = Uind
2 /gc g c
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minimum blockage). We write . Since c = 0.1 m, , for full to 

minimum blockage. Therefore, for f = 0.75 Hz, 1.00 Hz, and 1.25 Hz, Fr is in the ratio of 0.5625, 1.0, and 
1.5625, respectively. Video 2 (Bandyopadhyay 2018), and figure SI-TA-2, show that f = 1.0 Hz is where 
the longest and the thinnest tightly wound ‘disturbed-laminar’ (DL) helical root vortex is formed from the 
pristine initial condition (that is, a flat free surface without any pre-existing turbulence in the wake) and 
when the blockage is at its maximum, and it unwinds into a double helix when the blockage is reduced to 
0.12 of the maximum value of the blockage. No root vortex is formed at f = 0.75 Hz, and a generally 
turbulent vortex is formed at f = 1.25 Hz. In other words, the applied inertial force and the stabilizing 
gravity force are in best balance when f = 1.0 Hz. 

In Taylor-Couette flows, the cylinder diameters and rotational velocities provide the length and velocity 
scales of Taylor, Reynolds or Rossby numbers. No such fixed geometric scales are available in the present 
case. Here, the trailing edge rotational velocity and external foil-induced horizontal velocity are used to 
estimate the non-dimensional force ratios. 

The present work focuses on the stability of the root vortex and the relationship of the vortex posture to 

bubble formation due to bursting. The rules that vortex slants of  from  to  are stable and unstable 

thereafter, and that bubbles are formed when the vortex is unstable apply to all vortices studied. The work 
did not focus on how the DH root vortices are formed. The following classifications of the root vortices 
can nevertheless be made. The ‘disturbed-laminar’ (DL) cases are shown in figures 2, and SI-IA-2 to SI-
IA-4, all at f = 1 Hz. The turbulent cases are shown in figures 4(c1, d1), 6(a1), and 6(d: 1, 5), all at f = 
1.25 Hz.  

The double helix is clear in the DL case after unwinding and when bursting, but it is clear in the 
turbulent case right when it is formed long before bursting (unwinding is not observable). The pitch of the 

winding is  in the DL case, but is  in the turbulent case. The windings of the vortex tubes 
in the turbulent case has been called the aerated Taylor tubes, which are not formed in the DL case. The 
bubbles formed from the Taylor tubes are smaller, but they are larger in the DL case. The air intake funnel 

diameter is  the root vortex diameter in the above two classifications. The cases where the funnel is 
much larger (figure 9(n)) do not show any double helix but they have Taylor tubes and they have been 
called turbulent. The standing nature of the relationship of the aspect ratio of the wound vortex to the 
winding is considered elsewhere. 

The root vortex formed in the first flapping cycle out of the pristine flat free surface is not reproduced 
in the next cycle onwards. Due to a lack of cycle-to-cycle lock-in, the root vortex is not exactly 
reproducible cycle to cycle in later cycles either. However, after about 32 cycles from the start, there is a 
general similarity in the root vortex in the turbulent cases. These aspects are discussed later. In tornadoes, 

Fr ∝ f 2 /(gc) ∝ f 2 gc = (1 to 0.12)
m2

s2

β 0∘ 45∘

≥ 2c /3 < 2c /3

≤
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the boundary of the swirl ratio between the ‘disturbed-laminar’ and turbulent cases is not sharp (Trapp 
2000), as is also the case here.  

The other features of the pre-burst turbulent root vortex are:  the formation of small diameter arrays, 
aerated and counter-rotating Taylor cells (figure 9(e)), a sharp conical apex (figure 9(i)), a lower aspect 
ratio (length/diameter; figure 6(a1)) than in the ‘disturbed-laminar’ case, and smaller ‘coarse’ bubbles 
formed post-bursting (figure 6 versus figure 9(a)). Here, only the root vortex formed in the first cycle at 

the lowest flapping frequency of vortex formation, f = 1 Hz when Rossby number , has been 

called ‘laminar’, or ‘disturbed-laminar’ (figures 2, SI-IA-2 to SI-IA-4). The rest fall in the turbulent case. 
The appearance of the smallest diameter vortices is the prominent feature of the fully turbulent cases:  in 
the Taylor cells (figure 9(e)) and in the turbulent root vortex double helix arms (figures 4(c1), 4(d1)) at 

the origin of formation ( ). The features of bursting and bubble formation are similar except that 

the Kelvin modes are not apparent in the ‘laminar’ case. While input  torque is a constant cycle to cycle, 

the swirl experienced by the flow ( ) at the origin ( ) may be a determinant of the flow 

variations (figure 3(a)). Observe the flow at ( ) in Video 3. 

Generally, inertial force is the destabilizing force, while the restoring forces are surface tension, gravity, 
and viscous forces. For the bubbles, the following nondimensional numbers can be used to measure the 
ratio of the destabilizing and restoring forces because they can vary with depth or bubble size. The ratio 

of inertia to surface tension is given by the Weber number , where  is the density of water 

( ),  is the velocity (m/s), d is characteristic length, namely the diameter of the bubble (m), and  is 

surface tension (N/m) [γ in equation 3.2, and T in capillary wave discussion]. This variable is also a 

measure of the ratio of kinetic energy of impact of formation to the surface energy. The Bond number  

measures the ratio of the gravity force to the capillary force. It is given by , where  is 

the density difference of the two phases ( ), and g is acceleration due to gravity ( ). Surface 

tension dominates for Bo << 1.0, and gravity dominates for Bo >> 1.0, with an intermediate range where 

both effects are present. Coarser bubbles have higher . The shape of the bubble is characterized by the 

Morton number, simplified for air bubbles whose density is negligible compared to that of water, as 

, where  is the absolute viscosity of water (Ns/m2). The ratio of the inertial and gravity 

forces is given by the Froude number , where  is the diameter of the bubble (m). The volume 

of an irregular bubble, or several bubbles attached together but not coalesced, can be converted to an 

Ro = 0.20

x , y, z = 0
·θ

Ωy x , y, z = 0

x , y, z = 0

We =
ρV 2d

σ
ρ

kg/m3 V σ

Bo

Bo =
∆ ρ g d2

σ
∆ ρ

kg/m3 m /s2

Bo

Mo =
gμ4

ρσ3
  μ

Fr =
V 2

gd
d
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equivalent spherical bubble. The capillary number Ca, which is the ratio of the stabilizing forces—
viscous forces and surface tension—is considered later in relation to the formation of fine bubbles over 
the foil surface where the viscous forces in the boundary layer and the wettability have strong effects. 

The above non-dimensional numbers are related as . Here, Reynolds number , the 

ratio of inertia to viscous forces, is defined as , where  is the kinematic viscosity of water (m2/

s). This relationship can be used to check the internal consistency of the estimates of bubble diameter d, 
which is the common primary variable in all the non-dimensional numbers and is a measure of surface 
energy. 

The diameter of the bubbles formed away from the foil surface increases as depth reduces. Arched 
ellipsoidal bubbles have also been observed. This occurrence signifies that the bubble drag law does 
change in the present work (Haberman & Morton 1953). This indicates variations in the organization of 
the mechanisms of bubble formation. The drag of the fine bubbles may be assumed as the same as the 
drag of equivalent solid spheres, but that would not be true for coarse bubbles. In other words, the internal 
circulation of the bubbles may be of significance. The water used was filtered. Therefore, the drag is 

expected to be slightly lower than of tap water. The secular  trend, up to the bottom of the 

drag bucket, is valid for  < 250. Since neither the temperature stratification in the tank (see figure SI-

DA-3 in Data Appendix and in Bandyopadhyay (2018)) nor the span of the foil is large, the change in the 
density of air can be neglected. The non-dimensional parameters for the two types of bubbles are 
estimated in section below and in 3.7 in the main article. 

A.3 Surface waves 

The spiraling surface waves provide the initial condition of the formation and bursting of the root vortex. 
Hence, they are considered first. When the foil is not moving, the free surface is horizontal and flat 
because the surface energy is at a minimum. The foil motion adds surface energy whereby the surface is 
stretched vertically and waves are formed. Here, we identify the organization in the surface waves. This 
organization starts a domino effect of fluid dynamics, namely, air entrainment, vortex formation, bursting, 
bubble formation in two sizes, and the apportioning of entrainment between the vortex core and the 
suction side of the foil, which in turn affects the proportions of the coarse and fine bubbles formed. 

A.3.1 Transient divergence waves 

A feathered wake, as in Kelvin envelopes behind ships, is a characteristic of a dispersive medium (the 

Mo =
We3

Fr Red
4 Red

Red =
Vd
ν

ν

Red versus Cd

Red
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phase velocity of a wave changes with frequency, whereby the shape of the wave changes as it travels). 
Figure SI-TA-1 shows an example of surface displacement manifesting as waves. This Kelvin envelope is 
seen at one instant of time in the oscillation cycle and only at f = 1.25 Hz. Similar to the behaviour known 
from observations, as Fr increases with f, the amplitude of the divergent waves increases:  hence, the 
waves become visible at f = 1.25 Hz. On the other hand, the amplitude of the transverse waves decreases 
as Fr increases with f:  hence, these waves are not visible. In figures SI-TA-1(a, b), the caustic lies in one 
quadrant only and is an arch. This result comes from the approximated point source of pressure in the air 
intake vortex rotating in an elliptic orbit (which creates two points of stagnation—upstream and 
downstream of the foil in the proportion of 1:3). The Kelvin envelope is an arch and not straight, as it 
would be for a sailboat cruising straight along a channel. The familiar ship wake Kelvin envelope angle of

 can be discerned but only as a limiting value at the midline of the flow geometry. Remarkably, the 

surface waves are phase-to-phase quasi-steady, and we have found a variation of the Kelvin waves. This 
instantaneous example may be compared with a photograph (see figure SI-IA-1 in Image Appendix and 
Bandyopadhyay (2018)) of the steady hydropower intake at the mountainous lake at Horspranget, 
Sweden, due to Rahm (1953), where the scales are of geophysical proportions. Both have similar 
feathered divergent waves and an arched Kelvin envelope. 

From figure SI-TA-1, we estimate  to be . From the dispersion relationship, 

, which gives a value for  of 1.0 m/s for . This is the maximum value of U 

at f =1.25 Hz. This value of  is close to the maximum foil velocity , where for  = 1.25 Hz, 

average foil radius of 0.15 m, V = 1.18 m/s. The value of U would be lower at f = 0.75 Hz and 1.00 Hz in 

the ratio of . Write , where L is a length scaled to c for maximum blockage,  is 

the wavelength,  is the chord length, and U is the longitudinal velocity of the foil had there been no flow. 
The foil is a point source of pressure, and, theoretically, a sailboat is like a point source of pressure being 
dragged in a channel at a velocity of U, which gives rise to the Kelvin arch. A Kelvin-arched envelope is 

produced at Hz only at one instant of time when Fr = 1.0. 

A.3.2 Capillary waves  

Consider the case of surface ripples when the foil starts to move. In figure SI-TA-2, the foil stem is started 
impulsively from the rest state. Since energy spreads radially, the radial growth indicates the spread of 
energy. The foil image at 0.0 s shows the quiescent free surface for the impulsive start of roll, when there 
is no pitch at 0.0 s. No surface wave radiates for the period up to 0.70 s although the foil is rolling (see the 
foil image mirrored above the water line). At 0.70 s, the foil is about to pitch. The radially propagating 
capillary waves emerge at 1.20 s. At 1.27 s, the constant rays are beginning to merge; the foil leading edge 

19.5∘

λg c(2/3)

λg = 2πU2(cosθ )2 /g U θ = 0∘

U V = 2π f r f

f 2 Fr =
U
gL

=
λg

2πc
λg

c

f = 1.25 
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(LE) is turning nearer (in the image) to the reader. More waves appear with time as in internal gravity 
waves in stably stratified fluids (see equation 10 in Mowbray 1967). Insets in three frames in figure SI-
TA-2 show enlarged images. At 1.27 s, the number of rays has increased; at 1.67 s, a funnel of length c 
with two stagnation points has been created by the foil, and the stem is out of the water. Also see 
Bandyopadhyay (2018 Video 1). 

A tuning fork in water produces similar capillary waves that do not last beyond a few centimeters 
(Lighthill 1978, p. 225). It is interesting that the roll motion did not produce these waves. Since the surface 
waves in figure SI-TA-2 are like ripples (i.e., short wavelength < 0.07 m), surface tension is the only force 
restoring flatness. The capillary waves described here are not purely gravity waves. Still, for sinusoidal 
waves of wavenumber k, surface tension (T) effects can be replicated exactly by slightly increasing the 

acceleration due to gravity  by  (Lighthill, 1978, p. 223), where  = 0.074 Nm-1,  = 1000 Kgm-3. 

If  = 1/0.07 m-1 (stem circumference is 0.0254  = 0.08 m, which is at the upper edge of being a ripple), 

the incremental effect on g is 0.015 ms-2 (= 0.1%). Hence, since the constant phase rays are gravity 
waves, they agree remarkably with the Schlieren pictures of gravity waves (see figures SI-TA-3(c1–c3) in 
laboratory stratified brine solution of uniform Väisälä-Brunt frequency (Mowbray 1967; Stevenson 1968).  

Wave attenuation is expected due to oscillating waves, propagating in contra-rotating directions, and 
wave-wave interaction due to the orthogonal wave field. The elliptic partial differential equations of 
surface tension due to Young-Laplace have square and cubic curvature terms that interact. Advancing and 
receding contact angles are hysteretic. These effects may be present. The preference of the surface waves 
and surface vortex for appearing during the port but not the starboard excursions in the transitional flow 
considered later might correlate with the selection of the first direction of oscillation of the foil stem. 

Figure SI-TA-3 shows the formation of small-amplitude capillary waves on the free surface around the 
foil stem (a) and circumferential formation of standing waves in the funnel of the scale of the foil chord 
(b). In figure SI-TA-3(b), the wavelength is an even integer of the circumference, and the wavelength is 
increasing with the funnel diameter. The constant phase map in figure SI-TA-3(a) starts out apparently 
with four rays as in the St. Andrews Cross (figure SI-TA-3(c1)) observed in stably stratified tanks of brine 
disturbed by a stem oscillating vertically (Mowbray 1967); more rays in between appear with time.  

The capillary waves in figure SI-TA-3(a) first grow in number with time and then grow in amplitude SI-
TA-3(b) while standing in place as the waves superpose on the interface cone produced by the foil chord. 
As the bottom of the cone comes in contact with the foil, air is entrained through narrow cusps lying 
between the solid and the liquid surface, as shown schematically in figure SI-TA-3(c4) and the inset 
(figure SI-TA-3(c5)). In figures 1(c) and SI-TA-3(b) and in figure 6(b), air is visibly entrained at the 
leading edge of the foil, as shown by the streaks that are sometimes pinned to the grid markings on the 
foil. The roughness of the foil surface affects the local interface contact angle between the foil surface, air 

g ρ-1T k2 T ρ

k π
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and water. The formation of the fine bubbles follows the instability of the contact angle. 

The energy input by the foil introduces the surface oscillations shown in figures SI-TA-1 to SI-TA-3. 
Within the confines of the side walls, they produce the long-wavelength standing waves shown in figure 
SI-TA-1. When the pitching motion is added, smaller-wavelength standing waves are produced around the 
foil stem (figures SI-TA-2 and SI-TA-3). The waves stand because the opposing wavespeeds are equal in 
amplitude. Many wavelengths are produced, but the apparatus allows the selection of some of them. The 
energy in the waves around the stem is less than in the long-wavelength which are laterally arranged waves 
produced by the roll motion. There is likely amplification in the wave amplitude when pitching is added. 
The pitching oscillation is a spatiotemporal phase reset process that organizes the tuning that is similar to 
the vorticity organization in shark skins (Bandyopadhyay & Hellum 2014). (There is a similar phase reset 
process that is confined to temporal control in the aggregation of the neurons in the inferior-olive part of 
the brain that control the motion of all animals (Kazantsev et al. 2004)). These roll-pitch coupled waves 
grow into a corrugated funnel interface. Eventually, the surfaces are stretched, and the fine corrugations 
that appear form tubes of air. With further stretching, the air tubes thin. When the foil blockage is suddenly 
removed, capillary oscillations are set up in these tubes, and they break into coarse bubbles of a size 
bounded by the variations of the air tubes. The bubbles grow larger, some coalescing, as they rise. The 
energy input into the surface waves is eventually dissipated. The breakdown of the wrinkled interface into 
bubbles is a capillary instability process. If the surface wave energy is not dissipated within the time period 
of foil oscillation, a lack of cycle-to-cycle lock-in can be expected. These broad aspects are considered 
later. 

In figure SI-TA-3(a), two identical waves are traveling in opposite directions. Consider the difference in 
their interaction during the first foil oscillation cycle and any later cycle. A standing surface wave is 
created in the first cycle, but not in the others. The equation for the free surface due to a small amplitude 

planar wave is , where  is the velocity of travel of the plane wave 

along  at time ,  is the wave amplitude and  is the wavelength. In an infinite expanse, the free surface 

profile , for interacting waves may be represented (Currie 1993) by superposing the roll 

 and pitch  waves and adding higher-order interacting terms. Thus, 

 If , , and  of the opposing waves are 

i d e n t i c a l , a s t a n d i n g w a v e w i l l b e p r o d u c e d w h e r e b y 
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 Such expressions give the 

sinusoidal spatial growth at a given time and cosinusoidal temporal growth at a given spatial location. 
Using superposition, the complex potential can be similarly expressed, which gives t h e  particle paths. 

Since the waves do not die down at the end of each cycle, there are variations in , , and , and standing 

waves are not produced in the cycles after the first one. As a result, the wave driving foil and the wake do 
not perfectly lock-in with one another. 

In a rectangular tank of finite depth (where a pressure condition will apply to the free surface, and 
normal velocity components are zero on the tank floor and side walls, which prevent the travelling waves 
from propagating) and further, in the presence of a round foil stem, only a small, discrete spectrum of 
standing waves can appear. Since figure SI-TA-1 shows that a quasi-steady condition applies, a steady-
state solution of the Laplace equation of the velocity potential (where the free surface experiences gravity 
waves, and the induced flow nearby is irrotational), kinematic (where particles on the surface remain on 
the surface), dynamic (whereby a Bernoulli equation utilizing gravity is accounted for on the free surface) 
and impervious wall boundary conditions may be sought. Although generalized modes can be calculated, 
the coefficients in the solutions for our tank require calibration. The presence of the foil stem requires that 
the dynamic boundary condition on the free surface be modified to include the effects of surface tension 
which increases the propagation speed of the wave. Since we observe from below that the entrainment 
advances to the foil leading- edge vortex via deep hyperbolic cusps (Eggers 2000) along the foil stem and 
the foil, surface tension effects are locally important near the stem. 

A.4 Estimation of Re, We and Cd of large and small bubbles formed by the two mechanisms of bubble 
formation 

The mechanisms of the formation of the coarse and fine bubbles are different. The coarse bubbles are 
formed when the tubes of the capillary surface waves are first stretched into the funnel of the root vortex 
by the pitch oscillation during foil blockage, which then is released suddenly. Arrays of bubbles of fairly 
uniform diameter are formed. 

Fine bubbles, on the other hand, form on the foil surface farther from the foil root, where the bubble 
size would be influenced by the wetting properties and viscous drag forces (Lepercq-Bost et al. 2008). 
With increasing wall shear stress (decreasing viscous sublayer thickness) with increasing f, the bubble 

diameter would decrease. The capillary number  is defined as the ratio of the viscous force to the 
interfacial tension force and is given by 

ηθ(x ,  t) =
1
2

ϵ(sin
2π
λθ

(x − ct)+sin
2π
λθ

(x + ct)) = ϵsin
2πx
λθ

cos
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λθ
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 , (3.2) 

where  (Pa s) is the absolute viscosity of water, U (m/s) is posited as the velocity at the edge of the 

viscous sublayer, and  is the surface tension (N/m). The bubble diameter would be smaller than the 

viscous sublayer thickness. The bubbles would form when the difference in pressure, , between the 

surrounding water and the air jacket overcomes the capillary pressure. The minimum pressure difference, 

, would be a function of the contact angle, that is, the wetting property, as follows: 

  (3.3) 

where  is the contact angle between the water and air on the foil surface, and d is the bubble diameter.  

Here,  remains constant, but the head increases with the span of the foil. So, near the foil tip, the water 

will advance into the air jacket, but, at a shallower span, the air jacket will advance into the surrounding 

water. Depending on whether the interface on the foil surface is advancing or receding,  can be acute or 

obtuse. This mechanism can be called a wall-based mechanism. 

The fine bubbles are produced by the bursting of the air-jacketed boundary layer over the suction side 
of the foil near the outer end of the span where the foil surface velocity is higher. We model the diameters 
of the fine bubbles in the following manner. The fine bubbles are not formed at f = 0.75 Hz. Assuming a 

Blasius boundary layer to be developing over the foil, the foil velocity is , where r is the 

average foil span of 0.15 m. Assuming a Blasius profile, the boundary layer thickness at the half-chord 

distance of  from the leading edge is  = 1.9952×10-4 m at f = 1.0 Hz, and = 

1.7846×10-4 m at f = 1.25 Hz. These values are taken as the upper limit of the fine bubble diameters. The 

terminal velocity  is calculated using the Stokes (1880) solution , 

which gives 0.0216 m/s at f = 1.0 Hz and 0.0173 m/s at f = 1.25 Hz. Using standard fluid properties, we 
estimate the following values of the nondimensional parameters:  at f = 1.0 Hz, Bo =0.0054, Ca 
=2.98×10–4, Fr = 0.2394, Mo = 2.5638×10–11, Re =4.30, and We =0.0013; at f = 1.25 Hz, Bo =0.0043, Ca 

= 2.38×10–4, Fr =0.1713, Mo = 2.5638×10–11, Re = 3.08, and We = 7.3487×10–4. Because Bo is less than 

1.0, surface tension, not gravity, dominates as a stabilizing force, unlike in the coarse bubbles example 
(see below). Because the nondimensional parameter Mo is a fluid property, it does not change. 

The diameters of the coarse bubbles are estimated from the images. The estimated diameters of the 
bubbles produced from the double helix at the lowest-flow Reynolds number range from 7.0×10–3 m to 
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20.0×10–3 m. These bubbles are arched and distorted ellipsoids, and the diameter refers to the minor axis. 

The estimated diameters of the bubbles at higher-flow Reynolds numbers produced by stretching the air 
tubes range from 1.5×10–3 m to 5.0×10–3 m. We have called these the coarse bubbles. 

The values of diameter d for coarse bubbles are 1.5×10−3 m to 20.0×10–3 m when the terminal velocities 

𝑣∞ are 0.2 m/s to 0.4 m/s (Talaia 2007), where inertia, surface tension, viscosity and cleanliness affect the 

results. As shown in figure SI-TA-4, the present work lies in these ranges. There is a factor of 
approximately 104 to 105 between the diameters of the coarse bubbles and to those of the fine bubbles. 

Using the values of d and 𝑣∞ given above, the estimated non-dimensional parameters for the coarse 

bubbles are in these ranges:  d = 0.0015 m to 0.02 m,  = 0.20 m/s to 0.40 m/s, Bo = 0.303 to 53.82, 

 0.0028 to 0.0055,  2.72 to 0.8155,  2.5638×10–11to 2.5638×10–11,  300 to 8,000, 

and  0.8239 to 44. Because Bo is close to 1.0 at d = 0.0015 m, both surface tension and gravity 

forces act as stabilizing forces in the Taylor air tube case. But Bo is >> 1.0 when d is 0.02 m; hence, only 
gravity, not surface tension, will dominate as a stabilizing force in the double helix case. If the present 

apparatus is used for producing bubbles, repeating the helix experiment at C and C would vary the 

 by a factor of 10. 

There is organization within the clustering of bubbles (figure SI-TA-4). The clustering is an indication 
of the presence of waves, an evidence of the elastic response of vortex tubes. For coarse bubbles, the 
clustering indicates the presence of the capillary wave instabilities in the surface waves, or about the 
Taylor-Couette instabilities in the curved inflows of the aerated tubes from the free surface. The clustering 
of fine bubbles indicates the presence of boundary layer vortex flows induced by isolated surface 
roughness on the foil surface. 

We have seen that bubble arrays are formed when a stretched vortex tube is suddenly released. But, 
what happens if a group of capillary tubes in proximity is suddenly released en masse? The vector of the 
bubble array is a clue to the vector of the aerated tube array just prior to bursting. Figure SI-TA-4(e, f) 
shows the near-surface bubble arrays upstream and midstream of the foil in (e) and in the immediate 
downstream root region in (f). It is clear that there are few bubbles in the stable region of the root vortex 

, but there is a dense cluster of bubbles in the unstable region of the vortex . 

Also, the long linear bubble arrays upstream are at a shallow inclination of < . A few plausible short 
segments of dashed lines are shown of bubble arrays originating from the same aerated vortex tube. As 
marked by the box, the neighboring tubes discharge the bubbles simultaneously side by side some of the 
times. This organization of bubbles suggests that the neighboring tubes may oscillate synchronously when 
suddenly released after stretching. The en masse oscillation could explain the formation of the few 
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bubbles in the stable region. 

In an interesting interaction of the neighboring aerated capillary tubes shown enclosed by the ellipse in 
figure SI-TA-4(e), three to four tiny bubble arrays meet near the upstream of where the foil pierces the 
free surface (also see figure 3(a) to reference this region) indicating the presence of a local connection 
point. 

The clustering in fine bubbles formed over the foil is shown in figures SI-TA-4(a), SI-TA-4(b), and SI-
TA-4(c); clustering in coarse bubbles is shown in figures SI-TA-4(d), SI-TA-4(e), and SI-TA-4(f). In 
figures SI-TA-4(a) and SI-TA-4(b), the bubbles show the instability in the leading edge vortex. In figure 
SI-TA-4(c), there are equispaced streaks of a length roughly equal to the chord length that originate from 
the grid markings on the foil. The streaks indicate that the origin of the fine bubbles is related to the 
surface finish and contact angle. In figures SI-TA-4(d), SI-TA-4(e), and SI-TA-4(f), the bubbles are 
formed in the free flow away from the foil boundary layer. The surface energy is concentrated in the form 
of air-entrained stretched tubes that break up abruptly as the foil blockage is removed. In the case of the 
coarser-diameter bubbles formed away from the foil surface and near the foil root, the stretched curved 
tubes break into arrays of distinct bubbles of roughly the same diameter with the bubble size increasing 
with decrease in depth.  

The marked example in figure SI-TA-4(d) shows the presence of an array of coarse bubbles of nearly 

the same size slanted at precisely  to the flow direction. Near the foil, the slant of the bubble array is 

shallow. But downstream and away from the foil, the slope of the bubble array is largely . The bubbles 

are formed simultaneously in the entire field of view. This idea supports the hypothesis of bubble 

diameter number ( ) modeling given in the main article, namely that maximum stretching of the vortex 

at  followed by sudden relaxation causes the discrete bubbles to form out of the continuous aerated 

tube. In the modeling of  in section 3.6, the vortex core pressure due to centrifugal effects is balanced 

by surface tension. Equations 3.2 and 3.3, on the other hand, do not include any property of the vortex. 

Figures 1c and figure SI-TA-5 on one hand and figures 2 and 6 on the other show that there are two 
kinds of bursting:  the bursting of the air-entrained root vortex and the bursting of the air-jacketed foil 
boundary layer, i.e., the vortex bursting and the boundary layer bursting. The jet and the boundary layer 
velocity profiles are destabilized abruptly in both cases. Figure SI-TA-4(g) shows where the two sizes of 
bubbles are formed in relation to (Re versus Cd) for bubbles rising at terminal velocities in filtered water 
due to Haberman & Morton (1953). Similarly, figure SI-TA-4(h) shows where the two sizes of bubbles 
are formed in relation to (We versus Cd). The coarse bubbles form from stretched air tubes in the 
transitional regime of the drag bucket where the data are sensitive to the purity of water, temperature, and 
fluid properties. The fine bubbles form from the viscous foil boundary layer, which is very thin, in the 
Stokes region of drag. 
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The fine bubbles can be expected to be spherical. Coarser bubbles would have larger time scales and 
limited response to mixing. Bubbles have been modelled as monopoles of force (Xu et al. 2002). In the 
formation of the dispersed phase of fine bubbles from the continuous phase of thin air jackets, the no-slip 
boundary condition at the wall and the wall shear (higher wall shear producing smaller bubbles) are 
critical to the formation of these fine bubbles. However, incorporating the no-slip boundary condition in 
numerical simulations remains to be undertaken. The mechanism is likely to be Ca-number dependent. An 
oily surface could affect the formation of fine bubbles because of the effects on surface tension. With 
increasing Ca, bubble diameter will drop, and the mean Sauter diameter (a measure of the average droplet 
size) would decrease (Lepercq-Bost et al. 2008). Ca = 1 might represent a critical value for instability. 

For very fine bubbles, surface tension dominates, a perfectly spherical shape is reached, and the Stokes 
(1880) solution (gravity force is balanced by buoyancy and drag forces) gives the relationship of terminal 
velocity versus drag. Considering Cd versus Re, at Re = 1, Cd = 20. If bubble diameter d is 1.5 m–3, 

terminal velocity  is about 0.2 m/s (0.15 cm < d < 2 cm,  = 0.2 – 0.4 m/s (Talaia 2007), where 

inertia, surface tension, viscosity and cleanliness affect the results. The present work lies in these ranges. 
There is a factor of roughly 103 between the diameters of the fine bubbles produced near the outer span of 
the fin and the diameters of the bubbles in the root vortex. The fine bubbles rise slowly. Since they are 
formed in the outer part of the fin, the sharp boundary between the larger and smaller diameter bubbles 
can be expected to persist (see figure SI-IA-5 in Image Appendix in Bandyopadhyay (2018)). 

A.4.1 Mechanism of the formation of coarse bubbles:  Taylor air tubes of the root vortex 

Figure 9 (in the main article) shows the formation of stacks of aerated tubes whose diameter is similar to 
the coarse bubbles. Figure 9 has two parts:  9(a) and 9(b–n), the part 9(b–n) being subdivided into 9(b–h) 
and 9(i–n). Figure 9(a) shows an unwound double helix where the bubbles, one of them marked by the 

arrow, are forming at axial intervals ( ) approximately equal to half the diameter d of the tube locally. 

However,  varies axially, and the bubbles do not separate at axial distances of d (see figure 2). The 

interface necks locally because of the sudden loss of the tube stretching and the onset of radial oscillation. 
Theoretically, in progressive capillary waves, the maximum value of the ratio d/λ is 0.73 (where d is the 

height of the crest relative to the trough) if surface tension is the only restoring force and gravity is ignored 
on a nominally flat free surface (Crapper 1957). This process of bubble formation continues when the air 
tube is of much smaller diameter and is more numerous at higher Re numbers. 

In figures 9(b–h), f = 1.0 Hz; in figures 9(i–n), f = 1.25 Hz. Figures 9(b–n) show the foil root vortex and 
a stack of air tubes wrapped around. They are arranged in order of increasing complexity. Numerous 
bubbles of fairly uniform diameter are abruptly produced when the air tubes are suddenly relieved from 

stretching at maximum level (due to their  posture) because the pitching blockage has been removed. 
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Further examples of air tubes appear in figure SI-IA-6 in Image Appendix and Bandyopadhyay (2018).  

The curved flow of the foil root produces arrays of Taylor air tubes, more numerous and distorted at f = 
1.25 Hz. This flow may be modelled as a modified Taylor-Couette arrangement where, instead of the no-
slip cylinders, we have a pair of concentric cones of air and water rotating around a common axis (see 
frame n). The reduction in the diameter of the cones imposes an axial spiraling flow on the Taylor roll 
cells, called air tubes, or Taylor tubes, here.  

Taking centrifugal force as the destabilizing force and viscosity as a stabilizing force, define 

 (White 1994). Here,  is the external radius of the internal cylinder, 

and  is the internal radius of the external cylinder. Taking the gap, ( ) to be d (= 0.006 m), the high 

value of the radius ratio  is 0.85. The ratio can vary from 0.22 to 0.61 and cycle to cycle. In terms of 

solid cylinders, the ratio is 0.883 in Andereck et al. (1986). However, it is easier to measure the diameter of 
the root vortex, than the diameters of the vortices or bubbles. The critical value of Ta is 1700 and this 
measurement is taken to calculate the ‘cylinder’ gap which in the present case is the diameter of a Taylor 
roll cell or bubble diameter (d). Taking all cases, the root vortex diameter near the origin is 0.0154 m to 

0.08 m. At f = 1 Hz, take  as 0.08 m in one example of a large value, and  = 0.419 m/s. For 

critical , these give d = 0.0008 m, a reasonable value. Due to high background turbulence, the critical Ta 

may be <1700. The freestream and foil chord based Reynolds number is 750, a transitional value for 
reverse Karman jets (Bandyopadhyay et al. 2012). 

The root vortex has two conical cylindrical form (they are not circular cylindrical as in the classical 
Taylor-Couette flow). This sets up an internal helical flow with an upstream and a narrowing downstream. 
Hence, the flow is open axially (Wereley & Lueptow 1999). This spiraling core vortex is represented by 
the eigenvector shown schematically in figures 9(c), 9(d), 9(h) and 9(m). The flow is closed radially 
because it is rotating. The rotary motion of the air-water interface forms ripples (millimeter scale) creating 
the air tubes in figures 9(d–n). The tubes may also be originating in the free surface when the ripples are 
drawn into the funnel. In the lowest Re case in figure 9(b) at f = 1 Hz, the Taylor tubes are incipient and 
formed in pairs. Hence, the Taylor number (Ta) is barely critical (Tac). Owing to a lack of accurate lock-in, 
Re is slightly higher in figure 9(g), although figure 9(f) is still at 1 Hz. A model of the top-shaped vortex in 
figure 9(g) is shown in figure 9(h), which shows the spiraling eigenvector and an interesting narrowing of 
the tip where the rotational velocity is high. Stacks of Taylor tubes appear at the interface with some 
waviness. The nipple in figure 9(b) is rounded, but it is conical in figure 9(g). In both figures 9(b) and 9(g), 
the vortex has a narrowing halfway along the axis, meaning that the mode of the eigenvector has developed 
a “coning” in figure 9(g). This conical mode of the root vortex is stable because, overall, it is identical at f 
= 1.25 Hz, as shown in figures 9(i–k). It has been shown earlier that the stability is due to the fact that the 

vortex is stable for . In figure 9(n), Re is higher, and the vortex cross-section is displaying 

Ta = (V 2
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circumferential (but non-axisymmetric) Widnall-type instabilities (Pierrehumbert & Widnall 1982). The 
instabilities of the Taylor air tubes are considered below. 

In figures 9(i–k) and 9(n), the Taylor number is higher (Ta > Tac) because the number of air tubes is 
large. The bubble diameter would be the same as the Taylor cell diameter. In the case of figures 9(i–k) and 
9(n), the number of bubbles formed per unit length of the tube would be numerous since the air tube 
diameter is smaller than in figure 9(a). The flow is influenced by the “pseudo-wall” condition, which is, in 
fact, an air-water interface, making the overall flow bounded.  

Compared to figure 9(e), as shown schematically in 9(f), the Taylor tubes in figures 9(i–k) show breaks 
that are the twisting of the air tubes. The breaks indicate that spiraling waves are present in the Taylor tube 
stacks, in (9i) an example is marked by a pair of arrows, and the wavelength of the spiral is similar to the 
tube diameter. The elasticity magnifies the effect. From the standing wave model in an air tube, the local 

, where  is an increasingly large integer. The bubbles formed would spin in relation to . 

Figure 9(g) is modelled in 9(h), and figure 9(i–k) is modelled in 9(m). While the vortex eigenvector is 
identical, the Re of the Taylor tubes has increased, and the tubes are distorting and showing intermittency 
in the distortion.  

The dispersed packets of unstable vorticity in the sequence (i to k) co-exist below the stable stacks of air 

tubes still being stretched at . The unstable packets appear down below in the increasing adverse 
pressure gradient region where the root vortex is narrowing. They are already bursting in (k). The air tube 
in the straight part of the root vortex, however, is able to sustain the standing waves by selecting a higher 

value of . This feature is not seen in the narrowing part. It is suggested that, for instability and bursting to 

be triggered, the waves must stop standing first due to some larger scale ( ) non-uniformity in the 

boundary condition. 

The side to side rolling motion of the foil produces an overall horizontal jet flow from left to right in the 
images in figure 9. In figure 9(e, g, i-k), the Taylor tubes are inclined to the horizontal external flow 

direction at a mean angle of  which is the direction of principal strain. A few examples are marked by 

the pairs of thin arrows in (e, g and i), and the direction of each arrow indicating the direction each 
stretches. In (e), the curved arrow marks an upstream curling over of the tip. The air tubes are expected to 
be elliptical in the transverse plane. Near the tip, if the induced flow between the legs of a Taylor tube lying 
in the transverse plane (not visible) is upward, then in the absence of any external mean flow shear, an 
upstream curling over would be produced. Interestingly, in turbulent boundary layers, which are jungles of 
hairpin vortices, in the outer part of the layer and away from the wall, the hairpins also lie at a mean angle 

of  to the flow direction, and at low Re, similar upstream curling over do occur (Bandyopadhyay 1980; 

Head & Bandyopadhyay 1981; Perry & Chong 1982; Adrian et al. 2000; Wu & Moin 2009). 

L /D = Nπ N N

45∘

N

> > D

45∘

45∘

19



Supplementary Information JFM-18-S-1716   1/7/2020

Remarkably, the slanting of the Taylor tubes are close to  without much variation. We attribute this 
organization to the external forcing of the flapping foil and the wave synchronizing mechanism is called 
the self-referential phase reset (SPR) mechanism. We have demonstrated this mechanism spatio-
temporally in the drag reduction of low Re turbulent boundary layers remarkably accurately 
(Bandyopadhyay & Hellum 2014). The role of the principal axis in vortex stretching was discussed in 
section 3.4. 

Although the no-slip boundary condition of conventional Taylor-Couette cylinders (Taylor 1923) is 
modified to a slip condition of rippled free surface, the growth of waviness, spiraling, and intermittency of 
the air tubes with Re is similar (Coles 1965; Andrereck et al. 1986; Tritton 1989). The states of the Taylor 
air tubes are stable, organized, and not turbulent (Gollub & Sweeny 1975). It now becomes obvious why 
arrays of uniform sized bubbles are observed. The bubbles from neighboring tubes would rotate in the 
opposite directions (figure 9(d), 9(f), and 9(l)). The rotation helps provide the stable trajectory in figure 
6(b2). The above is an uncommon example of Taylor-Couette flow. 

A.4.2 Mechanism of the formation of fine bubbles: wall effects 

There is a physical separation between the turbulent root vortex and the boundary layer flow over the 
foil. The fine bubbles are formed on the foil. See the schematics in figures 1(b) and SI-TA-3(c) for two 
paths of air entrainment. Figure SI-TA-5 shows this wall-based mechanism of the formation of fine 
bubbles. Here, figures SI-TA-5(a) and SI-TA-5(b) show the funnel whose center is marked in figure SI-
TA-5(c) by a point source of pressure –p. This center is moving closer to the fin. Air has been sucked in, 
jacketing the suction side of the foil. Clouds of bubbles form near the trailing edge of the jacket and 
toward the foil tip. The edge of the fine bubble cloud toward the foil tip is moving upstream. But the 
trailing edge of the air jacket closer to the root is moving slightly toward the foil trailing edge. Near the 
foil root, there is an advancing wavefront forming bellows in the jacket—the arcs around the center –p, as 
shown in the schematic in figure SI-TA-5(c). Further, as shown in figure SI-TA-5(c), near the root, the air 
front advances toward the trailing edge, following the arc of the bellows, while the water front advances 
upstream toward the foil leading edge. Therefore, the contact angle on the side of the water recedes near 

the root ( ), while it advances near the foil tip ( ). The spanwise edge of the bubble cloud 

near the foil root is where the contact angle is at equilibrium. These aspects are clarified in the two 
elliptical insets. 

A.5 Initial condition dependence:  cycle-to-cycle concatenation 

Certain conservation statements can be made. The sum of roll ( ), pitch ( ), and twist ( ) torques 

introduced into the vortices is conserved cycle-to-cycle. The torque also determines the input surface 

45∘

γR < 90∘ γR > 90∘

τϕ τθ τθt
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energy. Total entrainment, which is conserved cycle-to-cycle, is the sum of the root and the foil 
entrainments (see figure SI-DA-4 in Data Appendix and Bandyopadhyay (2018)). The total surface energy 
input is conserved in the sum total of all coarse and fine bubble surface areas. When inertial forces are 
large (f =1.25 Hz), the funnel is large. If the sharp leading edge of the foil at its root penetrates the funnel, 
entrainment by the foil leading edge takes place. The funnel oscillates. The root vortex may spawn small 
funnels in the large funnel above it (see figure 13). The oscillating flow cycles are not locked-in meaning 
that the initial condition of each cycle is changing (Bandyopadhyay (2018, Video 1 and Video 4)). A 
concatenation model of this variation is considered here. 

The entrainment at the root ( ) and the foil ( ) shown in figure SI-DA-4 in Data Appendix and 

Bandyopadhyay (2018) can be described by the error function and complementary error function, 
respectively, as follows: 

 , (3.4) 

and 

  (3.5) 

Here, t is time, and x represents the surplus or deficiency in entrainment (mass or volume of air) from a 
long time average. The effect of the latter is carried over cycle-to-cycle. In figure SI-DA-4, the total 
normalized entrainment of 1.0 is given by the applied torque. 

A lack of cycle lock-in means that there are small differences in the initial condition between the 
successive cycles. The bubbles produced in each cycle are not fully merging back with the atmosphere, 
the free surface is not returning to pristine flatness, and the water mass motion has not dissipated at the 
end of each cycle. The energy of vortex bursting is not fully dissipated in each cycle. This lag in 
dissipation is causing an accumulation of energy over cycles. At f = 1.25 Hz, after the start from the 
undisturbed water, it takes 10–12 cycles for the cyclic foil entrainment to build up. This means that the 
input error accumulation reaches a peak over roughly 10-–12 cycles. The time scale of entrainment 
hysteresis is a slower process than the lags between roll and pitch, and roll and twist, built into the 
flapping. The slow hysteresis means that, above a certain limit, the pre-loaded root energy can take in 
very little fresh entrainment and produces a back pressure in the channel, which then oscillates upstream 
towards the foil. While the foil entrainment builds up over several cycles, the root excess energy is 
flushed out, whence the entrainment channel swings back to the root. Because no solid surface is 
involved, the root entrainment is assumed to be the path of least resistance compared to the foil 
entrainment. 

Ωroot Ωfoil

Ωroot = er f (x) =
2

π ∫
x

0
e−t2dt

Ωfoil = er fc(x) = 1 − er f (x) .
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FIGURES WITH CAPTIONS: 
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FIGURE SI-TA-1. Organized large-scale surface waves:  temporal divergent waves (a) that appear only on 
the port side and only at f = 1.25 Hz when the root vortex is turbulent; a quasi-steady schematic 
description of the waves (b); and an inset (c) showing details of (b) enlarged. The angle θ  of wave 

propagation is measured relative to the axis of the foil when it is not in motion;  is the wavelength;  

is a constant; U is the longitudinal velocity of the foil with no flow. Compare with divergent waves in 
figure SI-IA-1 obtained in a lake with hydroelectric intake. 

λ const
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FIGURE SI-TA-2. Time sequence (eight frames) of capillary waves near the foil stem. The dark radial lines 
are constant phase lines on the free surface. The foil stem is started impulsively. The insets show enlarged 
views. Arrows indicate rays of energy prior to merging into a funnel at 1.67 s. Foil kinematics are 

, , ,  = 1.25 Hz. ϕo = 40o θo = 45o θto = 75o f
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FIGURE SI-TA-3. Growth of foil ripples (a) into capillary waves in the funnel (b). Reproduction of 
Schlieren pictures (c1–c3) from Mowbray (1967); schematic (c4) shows two paths of air entrainment, 
where LE and TE are the foil leading edge and trailing edge, respectively. 
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FIGURE SI-TA-4. Bubbles are formed in clusters: fine bubbles in foil boundary layer (a–c) and coarse 
bubbles near free surface or away from the foil (d–f); ranges of Re (g) and We (h) where coarse and fine 
bubbles are formed in relation to (Re versus Cd) and (We versus Cd) (solid lines) due to Haberman & 
Morton (1953) for bubbles rising at terminal velocities in filtered water. The broken line in (g) is for rigid 
spheres. Arrays of coarse bubbles are formed when a stretched aerated vortex tube is suddenly released. 
All coarse bubbles are formed at the same time. 
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FIGURE SI-TA-5. Formation of fine bubbles on the foil surface:  time sequence of air jacket and regions of 
clouds of fine bubbles over the suction side of the fin (a, b); schematic of surface tension mechanism of 
the formation of fine bubbles (c). Two elliptical insets in (c) show cross sections of areas where the foil 
surface and the air and water interfaces meet. In (a), the markings (a, b) draw attention to an extremely 
thin aerated vortex with small amplitude waves, aligned with the center of the funnel; when stretched to 

the maximum extent due to the  slope, this vortex buckles to a sinusoid marked (c, d) in (b).  45∘
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B. Data Appendix 

 

FIGURE SI-DA-1. Foil oscillation angles. The rotational axes of (φ) and (θ, θt) are orthogonal. The former 

is in the nominal flow direction and produces most of the thrust. 
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FIGURE SI-DA-2. Typical time traces of roll angle (φ), difference between the angles of attack at the root 

and tip of the foil (αroot-αtip), thrust (Fx), roll torque (τφ), and hydrodynamic power (Phydrodynamic) when a top 

horizontal surface plate is installed to prevent the formation of surface waves and a root vortex that would 
cause air entrainment. The pitch (including twist) torque is about 10% of the sum of the roll and pitch 
torques. We estimate that 5% of the pitch torque is spent on the formation of the surface waves and root 
vortex that cause the air entrainment. Horizontal axis is time normalized by the time period of oscillation. 
Color varies from foil root (black) to tip (blue). 
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FIGURE SI-DA-3. Temperature recordings in the tow tank over two weeks. Two sensor 
recordings are shown for near surface and near bottom. The large oscillations are due 
to opening of large doors of the outdoor shed where the tank is located.
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FIGURE SI-DA-4. Model showing how entrainment  is apportioned between the root vortex ( ) and 

the foil suction ( ). 

Measurements of acoustic radiation from the foil: 

Acoustic measurements have been carried out in three 1 m scale swimmers—two cylindrical (BAUV, 

SPLINE), and one delta shaped (RAZOR), body equipped with six and four flapping foils, respectively—
in a 700, 000 gallon filtered water illuminated anechoic chamber with non-parallel walls and acoustic 
conical linings (acoustic test facility described in Ledoux JASA https://doi.org/10.1121/1.404742.; “The 
acoustics test facility at NUWC Newport, RI is one of the US Navy’s primary facilities for acoustic 
evaluation of underwater vehicles. The ATF can measure the acoustic characteristics of complete 

Ω Ωroot

Ωfoil
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underwater weapon systems as well as individual system components.”) Both BAUV and RAZOR swim 
at ~1 m/s and have extraordinarily low self-noise (see graph below). No evidence of any cavitation 
(hydrophone measurements or video images) has been found after years of swimming in the littoral 
waters. 
 

 Particularly near the root where span  and fluid velocity , hence chances of 
cavitation is negligible. Therefore, atmospheric aeration as in breaking waves (Lubin & Glockner 2015) is 
the marker and cavitation is not the marker of the root vortex. 

r → 0 v = 2π f r → 0
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FIGURE SI-DA-5. NOISE MEASUREMENTS IN NEWPORT ACOUSTIC TEST FACILITY. 6-
FOILS ATTACHED TO A SUBMERGED 1 M LONG CYLINDER. GRAPHS: AMBIENT, FOILS 
REMOVED (MOTOR & GEAR NOISE), FOIL @0.25 HZ, FOIL @1 HZ. NOTE 1: FOILS 
REMOVED @0.25 HZ AND FOILS AT 1 HZ HAVE SIMILAR PEAKS BECAUSE THEY ARE 

FROM GEARS AND NOT FROM FLOW. NOTE 2: THERE ARE SIX FOILS; NOISE PER FOIL 
IS 1/6TH OF WHAT IS SHOWN. FOILS INTRODUCE NEGLIGIBLE SELF-NOISE.
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C. Image Appendix 

 

 of 44 54

FIGURE SI-IA-1. Divergent waves and Kelvin arch in the mountainous dam at 
Horspranget, Sweden. Outline drawn after original unannotated image due to Rahm 
(1953).
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FIGURE SI-IA-2. Examples of helical winding in air-entrained root vortex of one full 
turn type; f = 1 Hz.
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FIGURE SI-IA-3. Example of an air-entrained ‘disturbed-laminar’, spiraling, vortex of one full turn type 
being stretched and then suddenly unwinding into a double helix, finally bursting at f = 1 Hz. All events 
taking place at the mean vortex inclination of 45 degrees. The free surface is not extensively disturbed.
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FIGURE SI-IA-4. Example of helical vortex of one full turn type bursting from the tip; f = 1 Hz.
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FIGURE SI-IA-5. A single frame representation of void fraction showing two distinct 
regimes. Most bubbles lie within the quarter span. Two distinct clusters of bubbles are 
seen:  dispersed fine bubbles from fin and packed coarse bubbles from root vortex. The 
fine broken-line envelope shows the densest concentration of bubbles. The broken line 
shows the approximate distribution of bubbles with depth. Most bubbles lie within S/4, 
where S is span (30 cm), near the surface. The bubble zone tapers down with 
downstream distance.
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Figure SI-IA-6. Further examples of Taylor air tubes at f = 1.25 Hz. Breaks in the bright 
lines indicate spiraling. The root vortex develops an interesting kink near the base 
visible in the first image from left. Vortex curvature and kinks were formed 
intermittently. These may occur due to the effects of the local surrounding rotating 
fluid. Small diameter aerated tubes, sometimes spiraling, form extensively at the air-
water interface in the vortex (left frame) and in the funnel (three frames on right).



Supplementary Information JFM-18-S-1716.R4   12/14/2019

 

FIGURE SI-IA-7. Frame by frame tracking of the vortex line from the foil tip roll up. Two arrows mark the 
two spirals formed just past the accelerating region of the foil boundary layer, that is where the foil 
thickness is at maximum. By then the vortex line has thinned. The spirals burst in the adverse pressure 
gradient region of the foil boundary layer. Even after bursting, the aerated vortex line continues along the 

slant of  to the external flow direction indicating optimal stretching and maximum turbulence 
intensification. 

45∘
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FIGURE SI-IA-8. Time sequence showing centrifugal effects on the foil tip vortex spiral. The hand drawn 

 arc refers to the tip vortex position in frame 3. The arc is horizontally translated in frames 1, 2 and 4 

to show relative vertical motion of the round tip vortex agglomeration. Also see figures 14 and 15. The 
chevron in (3) has reached the end of the favorable pressure gradient region. In (4), the chevron is spread 
laterally as it experiences the adverse pressure gradient of the foil boundary layer. Simultaneously, the foil 
centrifugal effects have reached a maximum because the rolled-up foil tip vortex agglomeration is radially 
displaced to the maximum extent. Frame (5) shows that, next, the chevron disappears, and a single spiral 
is formed in the adverse pressure gradient region. 

270∘
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FIGURE SI-IA-9. Rare simultaneous formation of a pair of double helix root vortex at f = 1.25 Hz. Such an 
occurrence indicates the critical nature of the root vortex and the sensitivity to initial and boundary 
conditions. The double helix pitch is lower (as appropriate for f = 1.25 Hz; see figure 12(i)) in the one 

slanted at . The pitch in the other double helix is similar to that in the second frame in figure IA-2 

where f = 1 Hz; this double spiral has clear one full turn and is of the -type. The upper vortex at  bursts 

in the next frame (2), but the one at the lower slant expands, but does not quite burst. 

β = 45∘

π 45∘
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 D. Video Appendix 

Available online 

Video 1:  

Title:VIDEO 1 Surface wavesLoRez.mp4 

4.4 MB; MPEG-4 Movie; Duration: 02:15  

Description: Shows transient surface waves; standing waves in funnel; transient divergent waves; the two 
halves of torque oscillation do not produce identical surface waves; bifurcation selects which half will 
produce the root vortex; effects of pure rolling and rolling plus pitching on formation of radiating 
capillary wave; foil f = 0.75, 1, 1.25 Hz. 

Video 2: 

Title: VIDEO 2 Double helix video clip Oct 2018 LoRez.mp4 

2.9 MB; MPEG-4 Movie; Duration 00:42 

Description: Shows aerated double helix (DH) root vortex formation and bursting; speed reduced to 
0.125x; roll = 45 deg. twist = 75 deg, f = 1.0 Hz, roll-pitch phase difference = 90 deg; foil motion: 
initially roll only, then pitching motion is added. 

Video 3: 

Title: VIDEO 3 Root vortexLoRez.mp4 

9.6 MB MPEG-4 Movie; Duration: 02:09 

Description: Transient air intake vortex in a fin subjected to orthogonal oscillations; f = 0.75 Hz, 1.0 Hz, 
1.25 Hz; notice the differences in the aerated diagonal root vortices formed at the three frequencies: none 
is formed at 0.75 Hz, ‘disturbed but laminar-like’ slender vortices at 1.0 Hz, and lower aspect ratio 
(length/diameter when wound) turbulent at 1.25 Hz. 
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Video 4 

Title: VIDEO 4 SUMMARY Album of organized motions of bubble formation 2016 Lo R....mp4 

13.1 MB MPEG-4 Movie; Duration: 04:41 

Description: An album of organized motions of bubble formation near a free surface subjected to 
orthogonal oscillating waves; the two halves of torque oscillation produced by a hydrofoil are not 
identical; f = 0.75 Hz, 1.0 Hz, 1.25 Hz; divergent waves appear on surface at 1.25 Hz only appearing 
briefly; leading edge suction side may get jacketed by air at 1.25 Hz; bubble formation is abrupt at 1.25 
Hz; standing waves in funnel forming when rolling and pitching motions are both present; the diagonal 
root vortex formation is shown at the three frequencies of oscillation; listing of organized motions. 

END OF SI. 
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