Supplementary Material (not for the paper publication)

Supplementary Material B. The transient boundary layer flow [, 0]y

We investigate the nature of [4, 0]y (5.6¢) for ¢ > 1. We anticipate that it is localised
in a boundary layer of z-thickness Ay = xt~/2, near z = 0, for which convenient co-
ordinates are ({,z):

¢ =2(1-x)t=0(1), 2(1—x) = 22 + 0(zY), z < 1. (la—c)
The evaluation of (5.6¢) for large ¢ is helped by writing
< J1(2
[a,ﬁ]bl = (W.%‘)_l[XFi7 FT+F0}7 Fo(t) = / 1( T) dr (2a,b)
: T
with
> J1(2
F. +iF; = F(x,t) = — / 1(27) exp(i2x(t — 7)) dr. (2¢)
t T
Since J1(27) = (77)"1/% cos(2r — 31/4) + O(773/2), we have
Fo ~ %W_l/Qt_?’/Q cos(2t — w/4) = O(t_3/2), (3)
which is small compared to the resonant contribution to F:
expli(2t — 37/4)] [ exp[i2(1 — x)(T — t)] 32
F=— 172 \ 27_3/2 dT+O(t ),

obtained on the basis that x is close to unity. It may be expressed as

. (2t — /4 _
F— IGXp[l((ﬂ-t)l/;T/ )] G(C) + O(t 3/2)7 (4&)
where
<1/2 0o i’ , . . )
G(O) == /0 © fg,)m ¢’ = 1— (—im¢)Y2 7€ erfe((—i)'/2) (4b)
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is a function of the similarity variable ¢ (1a). Use of (4c) shows that
G
| e = ame. (5)
With the help of (http://dlmf.nist.gov/7.6.E2), we may express (4b) in the form
G(Q) = —(=im)"2e™ + P(Q), (6a)

where P(() is an entire function with the power series expansion

PC) = P(0) +iPi(¢) =1+ (- mOW i erf((—i¢)"/?)
12
+Z 1- 3 gn—l) (6%)



Explicitly the real and imaginary parts are

P(¢Q) =1—(20*/3+ -, Pi(¢) = —2¢ + (20)°/15 + ---. (6¢)
The value of F determined by substitution of only the first term —(—in¢)Y/2e~i¢
of G into (4a) is —/2(1 — x) exp(2ixt) ~ —|z|exp(2ixt). It defines the contribution
—(7z) " Yz|[xsin(2xt), cos(2xt)] to the flow [il, ¥]y (2a), which exactly cancels the wave

part of [&,¥]ms (5.6b) so that their sum is simply [0, 94]. Hence the remaining second
term P({) determines the complete boundary layer flow [, ¥]mstai:

{ (7)o 41 }_ 1 [XPT(C) —xPi(C)} {COS(%—W/ZD

§ — , +0@t3?), (7
i) = 7 | Z20 o | s — | O (70
in which (see (1))

C=Z22t1+0@t™)) x=1+0@1") when ¢=0(1). (7b)
Note that the contribution from Fg is O(t~3/2) and contained in the error estimate. The
¢ = 0 values of (7a). At z = 0 the mainstream part [, Upms—+ (72) 1] of (7a) vanishes.
So what remains is [ﬁbl, zu)bl} ._g» Which with ¢ = 0, x =1 recovers (B1), valid for ¢ > 1.

For large (, rather than (6), we use the asymptotic form

G(¢) = 3¢ +0(¢7?) for ¢ >1 (8)

of (4b). To evaluate [, ¥y from (2) in that limit, we find it tidier, though not essential,
to reinstate the the asymptotic value (3) of Fp. Then substitution of (8) into (4a)
determines

F+Fo = (mt)/2¢7 [= exp(i(2t — 7/4)) + (1 —x) cos(2t — 7/4)|+O(t /%)
= — (mt) "V [xcos(2t — m/4) +isin(2t — w/4)|+O(t*/?). (9)
In turn substitution into (2a) yields
(G, 8]y = — (mw¢) "L (wt) /2 [sin(2t — 7/4), cos(2t — 7/4)] + O(t=3/?), (10)

which tends to zero at fixed x as z — oc.
We make the approximation x ~ 1 in (2a), continue to neglect Fg and evaluate the
mean value (mz)~!(F), using (4a), to obtain

(Op1) + {Up) =~ i(7mc)_1(7rt)_1/2 exp(i(2t—7r/4))/0 G(¢)dz, (11a)

which under the further approximation z ~ ((/t)'/? (see (7b)), implying z~*dz ~

1(t¢)~1/2d¢, yields

) exp(i(Zt — 7r/4)) 1 /t/w2 G(¢) ac. (11b)
0

(Or) + i{lp) =~ 1 ot 1172 (172
Then in the limit ¢/@? — oo, use of (5) determines
[<ab1>, <5bl>] = (271't)_1[cos(2t)7 —sin(2¢)] + O(t_3/2), (11¢)

as given previously by (5.7¢).



