Supplementary Material (not for the paper publication)

Supplementary Material B. The transient boundary layer flow $[\breve{u}, \breve{v}]_{b l}$

We investigate the nature of $[\breve{u}, \breve{v}]_{b l}(5.6 c)$ for $t \gg 1$. We anticipate that it is localised in a boundary layer of z-thickness $\Delta_{b l}=x t^{-1 / 2}$, near $z=0$, for which convenient coordinates are (ζ, z) :

$$
\zeta=2(1-\mathrm{x}) t=O(1), \quad 2(1-\mathrm{x})=\mathrm{z}^{2}+O\left(\mathrm{z}^{4}\right), \quad \mathrm{z} \ll 1 . \quad(1 a-c)
$$

The evaluation of ($5.6 c$) for large t is helped by writing

$$
\begin{equation*}
[\breve{u}, \breve{v}]_{b l}=(\pi x)^{-1}\left[\mathrm{xF}_{i}, \mathrm{~F}_{r}+\mathrm{F}_{0}\right], \quad \mathrm{F}_{0}(t)=\int_{t}^{\infty} \frac{\mathrm{J}_{1}(2 \tau)}{\tau} \mathrm{d} \tau \tag{2a,b}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{F}_{r}+\mathrm{iF}_{i} \equiv \mathrm{~F}(\mathrm{x}, t)=-\int_{t}^{\infty} \frac{\mathrm{J}_{1}(2 \tau)}{\tau} \exp (\mathrm{i} 2 \times(t-\tau)) \mathrm{d} \tau \tag{2c}
\end{equation*}
$$

Since $\mathrm{J}_{1}(2 \tau)=(\pi \tau)^{-1 / 2} \cos (2 \tau-3 \pi / 4)+O\left(\tau^{-3 / 2}\right)$, we have

$$
\begin{equation*}
\mathrm{F}_{0} \approx \frac{1}{2} \pi^{-1 / 2} t^{-3 / 2} \cos (2 t-\pi / 4)=O\left(t^{-3 / 2}\right) \tag{3}
\end{equation*}
$$

which is small compared to the resonant contribution to F :

$$
\mathrm{F}=-\frac{\exp [\mathrm{i}(2 t-3 \pi / 4)]}{\pi^{1 / 2}} \int_{t}^{\infty} \frac{\exp [\mathrm{i} 2(1-\mathrm{x})(\tau-t)]}{2 \tau^{3 / 2}} \mathrm{~d} \tau+O\left(t^{-3 / 2}\right)
$$

obtained on the basis that x is close to unity. It may be expressed as

$$
\begin{equation*}
\mathrm{F}=\mathrm{i} \frac{\exp [\mathrm{i}(2 t-\pi / 4)]}{(\pi t)^{1 / 2}} \mathrm{G}(\zeta)+O\left(t^{-3 / 2}\right) \tag{4a}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{G}(\zeta) & =\frac{\zeta^{1 / 2}}{2} \int_{0}^{\infty} \frac{\mathrm{e}^{\mathrm{i} \zeta^{\prime}}}{\left(\zeta+\zeta^{\prime}\right)^{3 / 2}} \mathrm{~d} \zeta^{\prime}=1-(-\mathrm{i} \pi \zeta)^{1 / 2} \mathrm{e}^{-\mathrm{i} \zeta} \operatorname{erfc}\left((-\mathrm{i} \zeta)^{1 / 2}\right) \tag{4b}\\
& =-\zeta^{1 / 2} \frac{\mathrm{~d}}{\mathrm{~d} \zeta}\left[\int_{0}^{\infty} \frac{\mathrm{e}^{\mathrm{i} \zeta^{\prime}}}{\left(\zeta+\zeta^{\prime}\right)^{1 / 2}}\right] \mathrm{d} \zeta^{\prime}=-(\mathrm{i} \pi \zeta)^{1 / 2} \frac{\mathrm{~d}}{\mathrm{~d} \zeta}\left[\mathrm{e}^{-\mathrm{i} \zeta} \operatorname{erfc}\left((-\mathrm{i} \zeta)^{1 / 2}\right)\right] \tag{4c}
\end{align*}
$$

is a function of the similarity variable $\zeta(1 a)$. Use of $(4 c)$ shows that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\mathrm{G}(\zeta)}{\zeta^{1 / 2}} \mathrm{~d} \zeta=(\mathrm{i} \pi)^{1 / 2} \tag{5}
\end{equation*}
$$

With the help of (http://dlmf.nist.gov/7.6.E2), we may express (4b) in the form

$$
\begin{equation*}
\mathrm{G}(\zeta)=-(-\mathrm{i} \pi \zeta)^{1 / 2} \mathrm{e}^{-\mathrm{i} \zeta}+\mathrm{P}(\zeta) \tag{6a}
\end{equation*}
$$

where $\mathrm{P}(\zeta)$ is an entire function with the power series expansion

$$
\begin{align*}
\mathrm{P}(\zeta) \equiv \mathrm{P}_{r}(\zeta)+\mathrm{iP}_{i}(\zeta) & =1+(-\mathrm{i} \pi \zeta)^{1 / 2} \mathrm{e}^{-\mathrm{i} \zeta} \operatorname{erf}\left((-\mathrm{i} \zeta)^{1 / 2}\right) \\
& =1+\sum_{n=1}^{\infty} \frac{(-\mathrm{i} 2 \zeta)^{n}}{1 \cdot 3 \cdots(2 n-1)} \tag{6b}
\end{align*}
$$

Explicitly the real and imaginary parts are

$$
\begin{equation*}
\mathrm{P}_{r}(\zeta)=1-(2 \zeta)^{2} / 3+\cdots, \quad \mathrm{P}_{i}(\zeta)=-2 \zeta+(2 \zeta)^{3} / 15+\cdots \tag{6c}
\end{equation*}
$$

The value of F determined by substitution of only the first term $-(-\mathrm{i} \pi \zeta)^{1 / 2} \mathrm{e}^{-\mathrm{i} \zeta}$ of G into $(4 a)$ is $-\sqrt{2(1-x)} \exp (2 \mathrm{ixt}) \approx-|\mathrm{z}| \exp (2 \mathrm{ix} t)$. It defines the contribution $-(\pi x)^{-1}|\mathrm{z}|[\mathrm{x} \sin (2 \mathrm{x} t), \cos (2 \mathrm{x} t)]$ to the flow $[\breve{u}, \breve{v}]_{b l}(2 a)$, which exactly cancels the wave part of $[\breve{u}, \breve{v}]_{m s}(5.6 b)$ so that their sum is simply $\left[0, \breve{v}_{G}\right]$. Hence the remaining second term $\mathrm{P}(\zeta)$ determines the complete boundary layer flow $[\breve{u}, \breve{v}]_{m s+b l}$:

$$
\left[\begin{array}{c}
(\pi x) \breve{u}_{m s+b l} \tag{7a}\\
(\pi x) \breve{v}_{m s+b l}+1
\end{array}\right]=\frac{1}{(\pi t)^{1 / 2}}\left[\begin{array}{ll}
\mathrm{xP}_{r}(\zeta) & -\mathrm{xP}(\zeta) \\
-\mathrm{P}_{i}(\zeta) & -\mathrm{P}_{r}(\zeta)
\end{array}\right]\left[\begin{array}{c}
\cos (2 t-\pi / 4) \\
\sin (2 t-\pi / 4)
\end{array}\right]+O\left(t^{-3 / 2}\right)
$$

in which (see (1))

$$
\zeta=\mathrm{z}^{2} t\left(1+O\left(t^{-1}\right)\right) \quad \mathrm{x}=1+O\left(t^{-1}\right) \quad \text { when } \quad \zeta=O(1)
$$

Note that the contribution from F_{0} is $O\left(t^{-3 / 2}\right)$ and contained in the error estimate. The $\zeta=0$ values of $(7 a)$. At $z=0$ the mainstream part $\left[\breve{u}_{m s}, \breve{v}_{m s}+(\pi x)^{-1}\right]$ of $(7 a)$ vanishes. So what remains is $\left[\breve{u}_{b l}, \breve{v}_{b l}\right]_{z=0}$, which with $\zeta=0, x=1$ recovers (B1), valid for $t \gg 1$.

For large ζ, rather than (6), we use the asymptotic form

$$
\begin{equation*}
\mathrm{G}(\zeta)=\frac{1}{2} \mathrm{i} \zeta^{-1}+O\left(\zeta^{-2}\right) \quad \text { for } \quad|\zeta| \gg 1 \tag{8}
\end{equation*}
$$

of (4b). To evaluate $[\breve{u}, \breve{v}]_{b l}$ from (2) in that limit, we find it tidier, though not essential, to reinstate the the asymptotic value (3) of F_{0}. Then substitution of (8) into (4a) determines

$$
\begin{align*}
\mathrm{F}+\mathrm{F}_{0} & =(\pi t)^{-1 / 2} \zeta^{-1}[-\exp (\mathrm{i}(2 t-\pi / 4))+(1-\mathrm{x}) \cos (2 t-\pi / 4)]+O\left(t^{-3 / 2}\right) \\
& =-(\pi t)^{-1 / 2} \zeta^{-1}[\mathrm{x} \cos (2 t-\pi / 4)+\mathrm{i} \sin (2 t-\pi / 4)]+O\left(t^{-3 / 2}\right) \tag{9}
\end{align*}
$$

In turn substitution into ($2 a$) yields

$$
\begin{equation*}
[\breve{u}, \breve{v}]_{b l}=-(\pi \varpi \zeta)^{-1}(\pi t)^{-1 / 2}[\sin (2 t-\pi / 4), \cos (2 t-\pi / 4)]+O\left(t^{-3 / 2}\right), \tag{10}
\end{equation*}
$$

which tends to zero at fixed x as $z \rightarrow \infty$.
We make the approximation $\mathrm{x} \approx 1$ in $(2 a)$, continue to neglect F_{0} and evaluate the mean value $(\pi x)^{-1}\langle\mathrm{~F}\rangle$, using ($4 a$), to obtain

$$
\begin{equation*}
\left\langle\breve{v}_{b l}\right\rangle+\mathrm{i}\left\langle\breve{u}_{b l}\right\rangle \approx \mathrm{i}(\pi x)^{-1}(\pi t)^{-1 / 2} \exp (\mathrm{i}(2 t-\pi / 4)) \int_{0}^{1} \mathrm{G}(\zeta) \mathrm{d} z, \tag{11a}
\end{equation*}
$$

which under the further approximation $\mathrm{z} \approx(\zeta / t)^{1 / 2}$ (see $(7 b)$), implying $x^{-1} \mathrm{~d} z \approx$ $\frac{1}{2}(t \zeta)^{-1 / 2} \mathrm{~d} \zeta$, yields

$$
\begin{equation*}
\left\langle\breve{v}_{b l}\right\rangle+\mathrm{i}\left\langle\breve{u}_{b l}\right\rangle \approx \mathrm{i} \frac{\exp (\mathrm{i}(2 t-\pi / 4))}{2 \pi t} \frac{1}{\pi^{1 / 2}} \int_{0}^{t / \varpi^{2}} \frac{\mathrm{G}(\zeta)}{\zeta^{1 / 2}} \mathrm{~d} \zeta . \tag{11b}
\end{equation*}
$$

Then in the limit $t / \varpi^{2} \rightarrow \infty$, use of (5) determines

$$
\begin{equation*}
\left[\left\langle\breve{u}_{b l}\right\rangle,\left\langle\breve{v}_{b l}\right\rangle\right]=(2 \pi t)^{-1}[\cos (2 t),-\sin (2 t)]+O\left(t^{-3 / 2}\right), \tag{11c}
\end{equation*}
$$

as given previously by (5.7c).

