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An analytic solution for gust–cascade
interaction noise including e↵ects of realistic
aerofoil geometry – supplementary material

Peter J. Baddoo and Lorna J. Ayton

This supplementary material includes several details of calculations and methods used
in the main paper.

S:1. O(1) solution

We may write the O(1) problem as
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no-flux across the wake:
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and no pressure jump across the wake:

�0 [h0] (�) = 2⇡iP0e
ik��, � > c�. (S:1.1f)

The solution is given in terms of the Fourier transform of the jump in acoustic potential
either side of the blade streamline in (3.11). In that equation, A0,n, B0,n and C0,n are
defined analogously to section S:2.2 with

T0,0 = �2
An

�1
, T0,l = 0, l 6= 0.

The Fourier transform of the acoustic field may be inverted in the downstream region
(Glegg 1999, §5.1) to obtain the value of the acoustic potential along the wake for insertion
into the boundary conditions (3.8b) and (3.9b). In a strip in the downstream region
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Along the lower side of the wake ( = 0�) we have
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where we have used the quasi-periodicity condition (3.14).
Finally, we define the constants
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so that in the normal velocity continuity condition (2.23) we may insert
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and in the pressure continuity condition (2.27) we may insert
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S:2. Solutions to Wiener–Hopf problems

In this section we provide the details of the solutions to the integral equations (3.31a),
(3.33a), (3.35a) and (3.37a) subject to the relevant boundary conditions. This corresponds
to step V of the road map. The first solution, for h1,⌃ , will include most of the
mathematical details and the subsequent solutions for h1,�, h1,� and h1,S will refer
to the first solution in many instances since the techniques employed are similar.

We begin by providing some crucial details of the Wiener–Hopf kernel.
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S:2.1. Details of Wiener–Hopf kernel, j(�)

Similarly to Glegg (1999), the multiplicative splitting of the Wiener–Hopf kernel is
given by
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The derivatives of J± evaluated at the duct modes are
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It may be demonstrated using standard results of the Gamma function (Peake 1992,
Appendix B), that the split kernel has asymptotic behaviour

J±(�) = O
⇣
�1/2

⌘
, as |�| ! 1 in M±, (S:2.3)

where M± correspond to the upper and lower half planes with an overlapping strip.
During the Wiener–Hopf analysis it is necessary to perform additive splittings of functions
involving the Wiener–Hopf kernel. To expedite this processes, we define the auxiliary
functions

J̃±(�, ⌘
±) =

J�(�)

� � ⌘±
. (S:2.4)

Note that J̃± is not analytic in M± since it possesses a simple pole at � = ⌘±.
Accordingly, we use pole removal to obtain the additive splittings
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We now present the solutions for the Wiener–Hopf equations for the D1,⌃ , D1,�, D1,�

and D1,S contributions.
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S:2.2. Solution for D1,⌃

The integral equation and boundary conditions for �0 [h1,⌃ ] and D1,⌃ are summarised
in (3.31a–d). In a similar way to Glegg (1999), we split this problem into four coupled
problems which are amenable to the Wiener–Hopf method. We write
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and its Fourier transform
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for n = 1, 2, 3, 4. The corresponding boundary values are
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where P (2)
1,⌃ and P (4)

1,⌃ are two constants of integration that will be specified to enforce
the Kutta condition. Summing the four above conditions results in the original boundary
conditions and, consequently, we may apply the Wiener–Hopf method to each semi-
infinite integral equation and sum the resulting contributions to obtain a solution to the
original equations.

S:2.2.1. Solution to first Wiener–Hopf problem – D(1)
1,⌃

In this section we solve the integral equation (S:2.9) for n = 1,
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Taking a Fourier transform of (S:2.13.a) gives
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We may use (S:2.1) to multiplicatively factorise j = J�J+ and express the Wiener–Hopf
equation (S:2.14) as
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Since we have decomposed the boundary data into a Fourier series, we are able to
analytically calculate its half-range Fourier transform. Applying the first relation in
(S:2.13.b) results in
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The next step in the Wiener–Hopf analysis is to additively factorise the left-hand side of
(S:2.16). The first term is already analytic in the lower half plane but the second term
is not analytic in either half plane. Therefore, we apply the typical technique of pole
removal (Noble 1958) to obtain

F (1)
1,⌃,+(�)

J�(�)
=

1

2⇡i

1X

l=�1

c⌃,l

� � �
l

1

J�(
�
l
)

| {z }
+

+
1

2⇡i

1X

l=�1

c⌃,l

� � �
l

⇢
1

J�(�)
� 1

J�(
�
l
)

�

| {z }
�

,

where the underbrace ± denotes that the function is analytic in the upper or lower
half-plane respectively. Therefore, (S:2.16) becomes
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We may now apply the standard Wiener–Hopf argument: since the left- and right-hand
sides of (S:2.17) are analytic in M⌥ respectively, and they agree on a strip, each side
defines the analytic continuation of the other. Therefore, equation (S:2.17) defines an
entire function, E1(�). By appealing to typical arguments that are justified in section
S:4, as |�| ! 1 in M�, the left-hand side of (S:2.17) decays due to (S:4.1.a) and (S:2.3).
Similarly, as |�| ! 1 in M+, the right-hand side of (S:2.17) is bounded due to (S:4.1.b)
and (S:2.3). Therefore, E1(�) is bounded in the entire plane so Liouville’s theorem tells
us that it must be a constant and, since E1(�) decays in M�, this constant must be zero.
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Therefore, we may rearrange the right-hand side of (S:2.17) to obtain
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S:2.2.2. Solution to second Wiener–Hopf problem – D(2)
1,⌃

In this section we solve the integral equation (S:2.9) for n = 2,
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Taking the Fourier transform of (S:2.19.a) gives
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Factoring out the ei�c� dependence and dividing by J+ transforms the Wiener–Hopf
equation (S:2.20) to
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Analytic gust–cascade interaction – supplementary material 7

We may use the downstream boundary condition for this problem (S:2.19.b) to write
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where P ⇤(2)
1,⌃ = P (2)
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0 c� . To calculate the remaining integral, we use the inversion
formula for the Fourier transform:
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for some su�ciently small ⌧1 > 0. By substituting this representation into our desired
integral in (S:2.23), we obtain
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Rearranging the order of integration and computing the resulting �-integral gives
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Inspection of the asymptotic behaviour of (S:2.18) determines that, since d� < c�, this
integral can be closed in M�. Since there are no branches in the integrand, the integral
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and, therefore,

1

2⇡i

Z 1�i⌧1

�1�i⌧1

D(1)
1,⌃(�1)e

�i�1c�

�1 � �
d�1 =

1X

l=�1

S1,⌃,le�i�
l c�

i(�0 � �
l
)(� � �

l
)

+
1X

n=0

A1,⌃,ne�i✓�n c�

i(✓�n � �0 )(� � ✓�n )
,

where the constants S1,⌃,l and A1,⌃,n are defined as
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Finally, we combine the integral with (S:2.23) to obtain the expression
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(S:2.24)
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We may now substitute this representation for D⇤(2)
1,⌃,+ into the Wiener–Hopf equation

(S:2.22) to obtain

F ⇤(2)
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where we have used the auxiliary function J̃ introduced in (S:2.4).
The left-hand side of the above equation is analytic in the upper half plane, but there

are terms on the right-hand side which are not analytic in either plane. Therefore, we
use the additive splitting (S:2.5) to obtain

F ⇤(2)
1,⌃,+(�)

4⇡J+(�)
�

1X

l=�1

S1,⌃,le�i�
l c�

i(�0 � �
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h
J̃�(�, ✓

�
n
)
i

+
+ P ⇤(2)

1,⌃

h
J̃�(�,

�
0 )
i

+
.

(S:2.25)

In a similar way to section S:2.2.1, we now apply the standard Wiener–Hopf argument. In
contrast to the previous section where the edge condition constrained the leading-edge
pressure singularity, we now apply the unsteady Kutta condition (Ayton et al. 2016)
which tells us that the intensity of the wake is such that both the velocity and pressure
are bounded at the trailing-edge. Practically, this means that �0 [h1,⌃ ] (c�) 6= 0 and its
derivatives are finite. Consequently, the left-hand side of (S:2.25) is bounded. In a similar

way to before, integration by parts can be applied to show that D⇤(2)
1,⌃,�(�) = O(1/�) as

|�| ! 1 in M�. Therefore, in this limit the right-hand side of (S:2.25) tends to a
constant. Analytic continuation, Liouville’s theorem, and the fact that the left-hand side
of (S:2.25) decays in M+, indicates that this constant must be zero. This allows us to find

an appropriate value of �0

h
h(2)
1,⌃

i
(c�) that satisfies the Kutta condition. If we multiply

the left-hand side of (S:2.25) by � and let |�| ! 1 in M+, the left-hand side of (S:2.25)
indicates that

P ⇤(2)
1,⌃ = �

1X

l=�1

S1,⌃,le�i�
l c�

i(�0 � �
l
)

·
J�(

�
l
)

J�(
�
0 )

�
1X

n=0

A1,⌃,ne�i✓�n c�

i(✓�n � �0 )
· J�(✓

�
n
)

J�(
�
0 )

.

So that, after substituting in the downstream representation (S:2.24) and the expression
for the pressure constant (S:2.26), the right-hand side of (S:2.25) yields

D(2)
1,⌃(�) = �

1X

l=�1

S1,⌃,lei(��
�
l )c�

i(� � �0 )(� � �
l
)
·
J�(

�
l
)

J�(�)
�

1X

n=0

A1,⌃,nei(��✓
�
n )c�

i(� � �0 )(� � ✓�n )
· J�(✓

�
n
)

J�(�)
.

(S:2.26)

It should be noted that the only poles of D(2)
1,⌃ in M+ are at the zeros of J� where

� = ✓+
n
.
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S:2.2.3. Solutions to third and fourth Wiener–Hopf problems – D(3)
1,⌃ , D

(4)
1,⌃

Since the boundary conditions (S:2.11.b) and (S:2.12.b) for �0

h
h(3)
1,⌃

i
and �0

h
h(4)
1,⌃

i

are coupled, we must solve for them simultaneously. Taking a Fourier Transform of (S:2.9)
and applying the boundary conditions for n = 3, 4 gives

F (3)
1,⌃,�(�) = �4⇡

⇣
D(3)

1,⌃,�(�) +D(3)
1,⌃,+(�)

⌘
j(�), (S:2.27)

F ⇤(4)
1,⌃,+(�) = �4⇡

⇣
D⇤(4)

1,⌃,�(�) +D⇤(4)
1,⌃,+(�)

⌘
j(�), (S:2.28)

where F (3)
1,⌃,�, D

(3)
1,⌃,� and D(3)

1,⌃,+ are defined in an analogous way to (S:2.15.a) and

(S:2.15.b), and F ⇤(4)
1,⌃,+, D

⇤(4)
1,⌃,+ and D⇤(4)

1,⌃,� are defined in an analogous way to (S:2.21.a),
(S:2.21.b) and (S:2.21.c). Using a similar approach to section S:2.2.2, we may show that
the upstream boundary condition (S:2.11.a) is equivalent to

D(3)
1,⌃,�(�) =

1

2⇡i

Z 1+i⌧0

�1+i⌧0

D(2)
1,⌃(�1) +D(4)

1,⌃(�1)

�1 � �
d�1,

for su�ciently small ⌧0 > 0. We now assume that the only poles of D(4)
1,⌃,� in M+ are

at � = ✓+
n
. An equivalent assumption was made by Glegg (1999), and it turns out that

the same result is achieved by matching upstream and downstream solutions across the
inter-blade region (Peake 1993). This assumption, and su�ciently fast decay, allows us
to close the above integral in M+ and evaluate it as

D(3)
1,⌃,�(�) = �

1X

n=0

B1,⌃,n

� � ✓+n
, (S:2.29)

where B1,⌃,n are the residues of D(2)
1,⌃,�(�1) + D(4)

1,⌃,�(�1) in � = ✓+
n
. The residues of

D(4)
1,⌃,� are currently unknown, but the residues of D(2)

1,⌃,� are given by

D(2)
r,⌃,k

=
�ei✓

+
k c�

i(✓+
k
� �0 )J

0
�(✓

+
k
)

( 1X

l=�1

S1,⌃,le�i�
l �c

✓+
k
� �

l

· J�(�l )

+
1X

n=0

A1,⌃,ne�i✓�n c�

✓+
k
� ✓�n

· J�(✓�n )
)
.

Wemay now substitute (S:2.29) into (S:2.27) and use the factorisations (S:2.1) and (S:2.5)
to obtain the Wiener–Hopf equation

F (3)
1,⌃,�(�)

4⇡J�(�)
+

1X

n=0

B1,⌃,n

� � ✓+n

h
J̃+(�, ✓

+
n
)
i

�
= D(3)

1,⌃,+(�)J+(�)�
1X

n=0

B1,⌃,n

� � ✓+n

h
J̃+(�, ✓

+
n
)
i

+
.

We appeal to similar edge conditions as those in section S:2.2.1, and consequently apply
the typical Wiener–Hopf argument to obtain

D(3)
1,⌃,+(�) =

1X

n=0

B1,⌃,n

� � ✓+n
·
⇢
1� J+(✓+n )

J+(�)

�
.

When we combine this expression with the upstream representation (S:2.29) we obtain

D(3)
1,⌃(�) = �

1X

n=0

B1,⌃,n

� � ✓+n
· J+(✓

+
n
)

J+(�)
. (S:2.30)
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The residues B1,⌃,n still need to be determined; we now move onto the solution for

D(4)
1,⌃ . In a similar way to section S:2.2.2, we may invert the Fourier transform for the

downstream boundary condition (S:2.12.b) to write

D⇤(4)
1,⌃,+(�) = �

P ⇤(4)
1,⌃

� � �0
� 1

2⇡i

Z 1+i⌧1

�1�i⌧1

1X

n=0

B1,⌃,n

(�1 � �)(�1 � ✓+n )

⇢
1� J+(✓+n )

J+(�1)

�
e�i�1c�d�1.

This integral can be closed in M� to obtain

D⇤(4)
1,⌃,+(�) = �

P ⇤(4)
1,⌃

� � �0
�

1X

n=0

C1,⌃,ne�i✓�n c�

i(✓�n � �0 )(� � ✓�n )
, (S:2.31)

where

C1,⌃,n =
1X

k=0

i(✓�
n
� �0 )

(✓+
k
� ✓�n )

·
J+(✓

+
k
)

J 0
+(✓

�
n )

·B1,⌃,k.

If we truncate the series, we may write this system of equations in matrix form:

CCC1,⌃ = LBBB1,⌃ , (S:2.32)

where

{L}
n,m

=
i(✓�

n
� �0 )

(✓+m � ✓�n )
· J+(✓

+
m
)

J 0
+(✓

�
n )

.

We now use the factorisations (S:2.1) and (S:2.5) to write the Wiener–Hopf equation
(S:2.28) in the form

F ⇤(4)
1,⌃,+(�)

4⇡J+(�)
+ P ⇤(4)

1,⌃

h
J̃�(�,

�
0 )
i

+
+

1X

n=0

C1,⌃,ne�i✓�n c�

i(✓�n � �0 )

h
J̃�(�, ✓

�
n
)
i

+

= D⇤(4)
1,⌃,�(�)J�(�)� P ⇤(4)

1,⌃

h
J̃�(�,

�
0 )
i

�
�

1X

n=0

C1,⌃,ne�ic�✓
�
n

i(✓�n � �0 )

h
J̃�(�, ✓

�
n
)
i

�
. (S:2.33)

A similar argument to section S:2.2.2 and application of the unsteady Kutta condition
yields

P ⇤(4)
1,⌃ = �

1X

n=0

C1,⌃,ne�i✓�n c�

i(✓�n � �0 )
· J�(✓

�
n
)

J�(
�
0 )

.

Therefore, rearranging (S:2.33) and applying the downstream boundary condition
(S:2.31) yields

D(4)
1,⌃(�) = �

1X

n=0

C1,⌃,neic�(��✓
�
n )

i(✓�n � �0 )(� � ✓�n )
· J�(✓

�
n
)

J�(�)
. (S:2.34)

As expected from our previous assumption, D(4)
1,⌃ only posseses poles in M+ at � = ✓+

n
.

We calculate the residues at these points as

B1,⌃,n = D1,⌃,n �
1X

m=0

C1,⌃,nei(✓
+
n�✓�m)c�

i(✓+n � �0 )(✓
+
n � ✓�m)

· J�(✓
�
m
)

J 0
�(✓

+
n )

,

or, in matrix form,

BBB1,⌃ = Dr,⌃ + FCCC1,⌃ , (S:2.35)
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where

{F}n,m = � ei(✓
+
n�✓�m)c�

i(✓+n � �0 )(✓
+
n � ✓�m)

· J�(✓
�
m
)

J 0
�(✓

+
n )

.

In a similar way to Glegg (1999), the pair of matrix equations (S:2.32) and (S:2.35) may
be combined and solved to give expressions for B1,⌃,n and C1,⌃,n. The solution for D1,⌃

is now complete.

S:2.3. Solution for D1,�

The integral equation and boundary conditions for �0 [h1,�] and D1,� are summarised
in (3.33a–e). Similarly to section S:2.2, we split this problem into four coupled problems

in an analogous way to (S:2.6) and (S:2.7). Consequently, each�0

h
h(n)
1,�

i
andD(n)

1,� satisfy

a semi-infinite integral equation of the form

f (n)
1,�(�) = 4⇡

Z 1

�1

n
�D1,�(�)j(�) +

⇣
�n,1G

(1)
�

(�) + �n,2G
(2)
�

(�)
⌘
· k(�)

o
e�i��d�,

(S:2.36)

for n = 1, 2, 3, 4, where

G(1)
�

(�) = �
1X

l=�1

c�,l

2⇡i(� � �
l
)
, G(2)

�
(�) =

1X

l=�1

(�1)lc�,l

2⇡i(� � �
l
)
ei(��

�
0 )c� .

The corresponding boundary values are

f (1)
1,�(�) = 0, � > 0; (S:2.37.a)

�0

h
h(1)
1,�

i
(�) = 0, � < 0; (S:2.37.b)

f (2)
1,�(�) = 0, � < c�; (S:2.38.a)

�0

h
h(1)
1,�

i
(�) +�0

h
h(2)
1,�

i
(�) = 2⇡iP (2)

1,�e
�i�

0 �, � > c�; (S:2.38.b)

f (3)
1,�(�) = 0, � > 0; (S:2.39.a)

�0

h
h(2)
1,�

i
(�) +�0

h
h(3)
1,�

i
(�) +�0

h
h(4)
1,�

i
(�) = 0, � < 0; (S:2.39.b)

f (4)
1,�(�) = 0, � < c�; (S:2.40.a)

�0

h
h(3)
1,�

i
(�) +�0

h
h(4)
1,�

i
(�) = 2⇡iP (4)

1,�e
�i�

0 �, � > c�; (S:2.40.b)

where P (2)
1,� and P (4)

1,� are two constants of integration that will be specified to enforce the
Kutta condition. Summing the four above boundary values results in the original integral
equation. Consequently, we may apply the Wiener–Hopf method to each individual
integral equation and sum the resulting contributions to obtain a solution to the original
integral equation.
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S:2.3.1. Solution to first Wiener–Hopf problem – D(1)
1,�

Taking a Fourier transform of (S:2.36) for n = 1, using the kernel splitting relation
(S:2.1), and applying (S:2.37.a) and (S:2.37.b) gives

F (1)
1,�,�(�)

4⇡J�(�)
=�D(1)

1,�,+(�)J+(�) +G(1)
�

(�)
k(�)

J�(�)
. (S:2.41)

Now we note that the only poles of G(1)
�

(�)k(�) in M� are at � = �
l
, ��

m
. Therefore,

we may apply pole removal to remove the singularities at these locations and write

k(�)G(1)
�

(�)

J�(�)
=

1X

m=�1

k�
r,m

G(1)
�

(��
m
)

(� � ��m)J�(�
�
m)

�
1X

l=�1

k(�
l
)c�,l

2⇡i(� � �
l
)J�(

�
l
)

| {z }
+

+
k(�)G(1)

�
(�)

J�(�)
�

1X

m=�1

k�
r,m

G(1)
�

(��
m
)

(� � ��m)J�(�
�
m)

+
1X

l=�1

k(�
l
)c�,l

2⇡i(� � �
l
)J�(

�
l
)

| {z }
�

,

(S:2.42)

where k�
r,m

are the residues of k at � = ��
m
. Therefore, (S:2.41) becomes

F (1)
1,�,�(�)

4⇡J�(�)
� G(1)

�
(�)k(�)

J�(�)
+

1X

m=�1

k�
r,m

G(1)
�

(��
m
)

(� � ��m)Jm(��m)
�

1X

l=�1

k(�0 )c�,l

2⇡i(� � �
l
)J�(

�
l
)
=

�D(1)
1,�,+(�)J+(�) +

1X

m=�1

k�
r,m

G(1)
�

(��
m
)

(� � ��m)J�(�
�
m)

�
1X

l=�1

k(�
l
)c�,l

2⇡i(� � �
l
)J�(

�
l
)
.

(S:2.43)

We now appeal to an argument similar to that in section S:2.2.1 to conclude that each
side of the above expression is equivalent to a constant that must vanish. Consequently,
we obtain the following expression

D(1)
1,�(�) =

1X

l=�1

T1,�,l

(� � �
l
)
· 1

J+(�)
+

1X

m=�1

R1,�,m

(� � ��m)
· 1

J+(�)
, (S:2.44)

where

R1,�,m =
k�
r,m

G(1)
�

(��
m
)

J�(�
�
m)

, T1,�,l =
c�,lk(

�
l
)

2⇡iJ�(
�
l
)
.

S:2.3.2. Solution to second Wiener–Hopf problem – D(2)
1,�

Taking a Fourier transform of (S:2.36) for n = 2, using the kernel splitting relation
(S:2.1), and applying the analogous form of the upstream boundary values (S:2.38.a)
gives

F ⇤(2)
1+ (�)

4⇡J+(�)
=�

⇣
D⇤(2)

1,��(�) +D⇤(2)
1,�+(�)

⌘
J�(�) +G⇤(2)

�
(�)

k(�)

J+(�)
, (S:2.45)

where F ⇤(2)
1,�,+, D

⇤(2)
1,�,� and D⇤(2)

1,�,+ are defined analogously to (S:2.21.a), (S:2.21.b) and

(S:2.21.c) respectively, and G⇤(2)
�

(�) = G(2)
�

(�)e�ic�� . Using a similar approach to section



Analytic gust–cascade interaction – supplementary material 13

S:2.2.2, we may use the downstream boundary values (S:2.38.b) to write

D⇤(2)
1,�,+(�) =�

P ⇤(2)
1,�

� � �
l

� 1

2⇡i

Z 1�i⌧1

�1�i⌧1

D(1)
1,�(�1)e

�i�1c�

�1 � �
d�1. (S:2.46)

This integral can be closed in M�. Inspection of (S:2.44) determines that the only poles

of D(1)
1,� in M� are at � = �

l
, ✓�

n
. By noting the identities

1

2⇡i

Z 1�i⌧1

�1�i⌧1

1

J+(�1)

1X

l=�1

T1,�,l

(�1 � �
l
)
· e

�i�1c�

�1 � �
d�1 =

1X

l=�1

T1,�,l

J+(
�
l
)
·e

�i�
l c�

� � �
l

+
1X

n=0

( 1X

l=�1

T1,�,l

✓�n � �
l

)
· e�i✓�n c�

J 0
+(✓

�
n )(� � ✓�n )

,

1

2⇡i

Z 1�i⌧1

�1�i⌧1

1

J+(�1)

1X

m=�1

R1,�,m

�1 � ��m
· e

�i�1c�

�1 � �
d�1 =

1X

n=0

( 1X

m=�1

R1,�,m

✓�n � ��m

)
e�i✓�n c�

J 0(✓�n )(� � ✓�n )
,

we conclude that

1

2⇡i

Z 1�i⌧1

�1�i⌧1

D(1)
1,�(�1)

e�i�1c�

�1 � �
d�1 =

1X

l=�1

Sle�i�
l c�

i(�0 � �
l
)(� � �

l
)

+
1X

n=0

Ane�i✓�n c�

i(✓�n � �0 )(� � ✓�n )
,

where

S1,�,l =
i(�0 � �

l
)

J+(
�
l
)

T1,�,l,

A1,�,n =
i(✓�

n
� �0 )

J 0
+(✓

�
n )

 1X

m=�1

R1,�,m

✓�n � ��m
+

1X

l=�1

T1,�,l

✓�n � �
l
)

!
.

Combining these expressions with (S:2.46) obtains the identity

D⇤(2)
1,�,+(�) =�

1X

l=�1

S1,�,le�i�
l c�

i(�0 � �
l
)(� � �

l
)
�

1X

n=0

A1,�,ne�i✓�n c�

i(✓�n � �
l
)(� � ✓�n )

�
P ⇤(2)
1,�

� � �0
.

(S:2.47)

Substitution of (S:2.47) into (S:2.45) and application of the additive factorisation (S:2.5),
and an analogous version of (S:2.42), yields

F ⇤(2)
1,�,+(�)

4⇡J+(�)
�

1X

l=�1

S1,�,le�i�
l c�

i(�0 � �
l
)

h
J̃�(�,

�
l
)
i

+
�

1X

n=0

A1,�,ne�i✓�n c�

i(✓�n � �0 )

h
J̃�(�, ✓

�
n
)
i

+

� k(�)G⇤(2)
�

(�)

J+(�)
+

1X

m=�1

k+
r,m

G⇤(2)
�

(�+
m
)

(� � �+m)J+(�
+
m)

� P ⇤(2)
1,�

h
J̃�(�,

�
0 )
i

+
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=� J�(�)D
⇤(2)
1,�,�(�) +

1X

l=�1

S1,�,le�i�
l c�

i(�0 � �
l
)

h
J̃�(�,

�
l
)
i

�
(S:2.48)

+
1X

n=0

A1,�,ne�i✓�n c�

i(✓�n � �0 )

h
J̃�(�, ✓

�
n
)
i

�
+

1X

m=�1

k+
r,m

G⇤(2)
�

(�+
m
)

(� � �+m)J+(�
+
m)

+ P ⇤(2)
1,�

h
J̃�(�,

�
0 )
i

�
.

(S:2.49)

By applying the unsteady Kutta condition via a similar argument to section S:2.2.2, we
conclude that each side of the above equation must be equal to zero. Multiplying by �
and letting |�| ! 1 in M+, the left-hand side of (S:2.49) gives

P ⇤(2)
1,� =�

1X

l=�1

S1,�,le�i�
l c�

i(�0 � �
l
)

·
J�(

�
l
)

J�(
�
0 )

�
1X

n=0

A1,�,ne�i✓�n c�

i(✓�n � �0 )
· J�(✓

�
n
)

J�(
�
0 )

+
1X

m=�1

U1,�,m

i(�+m � �0 )
· 1

J�(
�
0 )

,

where

U1,�,m =i(�+
m
� �0 ) ·

k+
r,m

G⇤(2)
�

(�+
m
)

J+(�
+
m)

.

Substituting in the downstream boundary data (S:2.47), rearranging the right-hand side
of (S:2.49), and applying the pressure representation (S:2.50) gives the final expression

D(2)
1,�(�) =�

1X

l=�1

S1,�,lei(��
�
l )c�

i(� � �0 )(� � �
l
)
·
J�(

�
l
)

J�(�)
�

1X

n=0

A1,�,nei(��✓
�
n )c�

i(� � �0 )(� � ✓�n )
· J�(✓

�
n
)

J�(�)

�
1X

m=�1

U1,�,mei�c�

i(� � �0 )(� � �+m)
· 1

J�(�)
. (S:2.50)

S:2.3.3. Solution to third and fourth Wiener–Hopf problems – D(3)
1,�, D

(4)
1,�

The method of solution for D(3)
1,� and D(4)

1,� is identical to section S:2.2.3 except that

the residues of D(2)
1,� at � = ✓+

n
are given by

D(2)
r,�,k

=
�ei✓

+
k c�

i(✓+
k
� �0 )J

0
�(✓

+
k
)

( 1X

l=�1

S1,�,le�i�
l c�

(✓+
k
� �

l
)

· J�(�l )

+
1X

n=0

A1,�,ne�i✓�n c�

(✓+
k
� ✓�n )

· J�(✓�n ) +
1X

m=�1

U1,�,m

✓+
k
� �+m

)
.

Consequently, analogous relations to (S:2.30) and (S:2.34) may be derived, and the
calculations of B1,�,n and C1,�,n are achieved via (S:2.32) and (S:2.35).

S:2.4. Solution for D1,�

The integral equation and boundary values for �h1,� and D1,� are summarised in
(3.35a–e). Similarly to section S:2.2, we split this problem into four coupled problems,
such as in (S:2.6) and (S:2.7), resulting in the semi-infinite integral equations

f (n)
1,� (�) = 4⇡

Z 1

�1

n
�D(n)

1,� (�)j(�) + �2,nG� (�)k(�)
o
e�i�� d�, (S:2.51)



Analytic gust–cascade interaction – supplementary material 15

for n = 1, 2, 3, 4. The corresponding boundary values are given by

f (1)
1,� (�) = 0, � > 0; (S:2.52.a)

�0

h
h(1)
1,�

i
(�) = 0, � < 0; (S:2.52.b)

f (2)
1,� (�) = 0, � < c�; (S:2.53.a)

�0

h
h(1)
1,�

i
(�) +�0

h
h(2)
1,�

i
(�) =

2⇡iP (2)
1,� e

�i�
0 � + �

 
X

±
H±0

0,�
0

e�i�
0 � +

1X

m=�1
H0

0,me�i��
m�

!
, � > c�; (S:2.53.b)

f (3)
1,� (�) = 0, � > 0; (S:2.54.a)

�0

h
h(2)
1,�

i
(�) +�0

h
h(3)
1,⌃

i
+�0

h
h(4)
1,�

i
(�) = 0, � < 0; (S:2.54.b)

f (4)
1,� (�) = 0, � < c�; (S:2.55.a)

�0

h
h(3)
1,�

i
(�) +�0

h
h(4)
1,⌃

i
(�) = 2⇡iP (4)

1,� e
�i�

0 �, � > c�; (S:2.55.b)

where, as before, P (2)
1,� and P (4)

1,� are two constants of integration that will be specified to
enforce the Kutta condition.

S:2.4.1. Solution to first Wiener–Hopf problem – D(1)
1,�

By applying a similar argument to section S:2.2.1, we conclude that

D(1)
1,� (�) = 0. (S:2.56)

S:2.4.2. Solution to second Wiener–Hopf problem – D(2)
1,�

Taking the Fourier transform of (S:2.51) for n = 2, using the kernel splitting property
(S:2.1), and applying the upstream boundary values (S:2.53.a) yields

F ⇤(2)
1,�,+(�)

4⇡J+(�)
= �

⇣
D⇤(2)

1,�,�(�) +D⇤(2)
1,�,+(�)

⌘
J�(�) +G⇤

�
(�)

k(�)

J+(�)
, (S:2.57)

where F ⇤(2)
1,�,+, D

⇤(2)
1,�,� and D⇤(2)

1,�,+ are defined analogously to (S:2.21.a), (S:2.21.b) and
(S:2.21.c) respectively. The solution to the first integral equation (S:2.56) means that

�0

h
h(1)
1,�

i
(�) ⌘ 0. Therefore, we may use the downstream boundary values (S:2.53.b) to

write

D⇤(2)
1,�,+(�) = �

P ⇤(2)
1,�

� � �0
� �

2⇡i

0

@
X

±

H±0
0,�

0

e�i�
0 c�

� � �0
+

1X

m=�1

H0
0,me�i��

mc�

� � ��m

1

A .

Consequently, we use pole removal to obtain the additive splitting

J�(�)D
⇤(2)
1,�,+(�) =

h
J�(�)D

⇤(2)
1,�,+(�)

i

+
+
h
J�(�)D

⇤(2)
1,�,+(�)

i

�
, (S:2.58)
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where
h
J�(�)D

⇤(2)
1,�,+(�)

i

±
=� P ⇤(2)

1,�

h
J̃�(�,

�
0 )
i

±

� �

2⇡i

 
X

±
H±0

0,�
0

e�i�
0 c�

h
J̃�(�,

�
0 )
i

±
+

1X

m=�1
H0

0,me�i��
mc�

h
J̃�(�,�

�
m
)
i

±

!
.

We may also use pole removal to obtain the additive splitting

G⇤
�
(�)

k(�)

J+(�)
= G⇤

�
(�)

k(�)

J+(�)
�

1X

m=�1

U1,�,m

i(�+m � �0 )(� � �+m)
| {z }

+

+
1X

m=�1

U1,�,m

i(�+m � �0 )(� � �+m)
| {z }

�

, (S:2.59)

where

U1,�,m =
�⇣+

m
(�+

m
� �0 )

8⇡2��

p
k2w2 � fm

· 1

J+(�
+
m)

⇥

0

@
X

±

±⇣

�
0
H±0

0,�
0

e�i�
0 c�

�+m � �0
+

1X

k=�1

⇣�
k
H0

0,ke
�i��

k c�

�+m � ��
k

1

A .

Substituting the additive splitting (S:2.58) and wake coe�cient (S:2.59) into the Wiener–
Hopf equation (S:2.57) yields

F ⇤(2)
1,�,+(�)

4⇡J+(�)
�G⇤

�
(�)

k(�)

J+(�)
+

1X

m=�1

U1,�,m

i(�+m � �0 )(� � �+m)
+
h
J�(�)D

⇤(2)
1,�,+(�)

i

+

= �D⇤(2)
1,�,�(�)J�(�)�

h
J�(�)D

⇤(2)
1,�,+(�)

i

�
+

1X

m=�1

U1,�,m

i(�+m � �0 )(� � �+m)
.

Following section S:2.2.2, we apply the standard Wiener–Hopf method and obtain

P ⇤(2)
1,� =

1X

m=�1

U1,�,m

i(�+m � �0 )
· 1

J�(
�
0 )

� �

2⇡i

 
X

±
H±0

0,�
0

e�i�
0 c� +

1X

m=�1
H0

0,me�i��
mc� · J�(�

�
m
)

J�(
�
0 )

!
, (S:2.60)

and

D⇤(2)
1,�,�(�) =

1X

m=�1

U1,�,m

i(�+m � �0 )(� � �+m)
· 1

J�(�)
+ P ⇤(2)

1,�

h
J̃�(�,

�
0 )
i

�
J�(�)

+
�

2⇡i

 
X

±
H±0

0,�
0

e�i�
0 c�

h
J̃�(�,

�
0 )
i

�
J�(�)

+
1X

m=�1
H0

0,me�i��
mc�

h
J̃�(�,��m)

i

�
J�(�)

!
.
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Consequently, substituting in the downstream representation (S:2.58) and (S:2.60) results
in

D(2)
1,� (�) = � �

2⇡i

1X

m=�1

J�(��m)

J�(�)
·
(��

m
� �0 )H

0
0,mei(���

�
m)c�

(� � �0 )(� � ��m)

�
1X

m=�1

U1,�,mei�c�

i(� � �0 )(� � �+m)
· 1

J�(�)
.

S:2.4.3. Solution to third and fourth Wiener–Hopf problems – D(3)
1,� , D

(4)
1,�

The solution to the coupled 3rd and 4th Wiener–Hopf equations is identical to that in
previous sections except

D(2)
r,�,k

=
�ei✓

+
k c�

i(✓+
k
� �0 )J

0
�(✓

+
k
)

( 1X

m=�1

U1,�,m

✓+
k
� �+m

+
�

2⇡

1X

m=�1

��
m
� �0

✓+
k
� ��m

J�(�
�
m
)H0

0,me�i��
mc�

)
.

S:2.5. Solution for D1,S

The integral equation and boundary values for �0 [h1,S ] and D1,S are summarised in
(3.37a–d). We perform an analogous splitting to that in (S:2.6) and (S:2.7). The integral

equations satisfied by each �0

h
h(n)
1,S

i
and D(n)

1,S are

f (n)
1,S (�) = 4⇡

Z 1

�1

n
�D1,S(�)j(�) + �n,1S

(1)(�) + �n,2S
(2)(�)

o
e�i��d�, (S:2.61)

for n = 1, 2, 3, 4, where

S(1)(�) = Su(�) + Si,(1)(�), S(2)(�) = Sd(�) + Si,(2)(�),

which are defined in (S:6.11), (S:6.12) and (S:6.13).
The (homogeneous) boundary values are given by

f (1)
1,S(�) = 0, � > 0; (S:2.62.a)

�0

h
h(1)
1,S

i
(�) = 0, � < 0; (S:2.62.b)

f (2)
1,S(�) = 0, � < c�; (S:2.63.a)

�0

h
h(1)
1,S

i
(�) +�0

h
h(2)
1,S

i
(�) = 2⇡iP (2)

1,Se
�i�

0 �, � > c�; (S:2.63.b)

f (3)
1,S(�) = 0, � > 0; (S:2.64.a)

�0

h
h(2)
1,S

i
(�) +�0

h
h(3)
1,S

i
(�) +�0

h
h(4)
1,S

i
(�) = 0, � < 0; (S:2.64.b)

f (4)
1,S(�) = 0, � < c�; (S:2.65.a)

�0

h
h(4)
1,S

i
(�) +�0

h
h(3)
1,S

i
(�) = 2⇡iP (4)

1,Se
�i�

0 �, � > c�; (S:2.65.b)



18 P. J Baddoo and L. J. Ayton

where P (2)
1,S and P (4)

1,S are two constants of integration that will be specified to enforce the
Kutta condition.

S:2.5.1. Solution to first Wiener–Hopf problem – D(1)
1,S

Taking a Fourier transform of (S:2.61) for n = 1, applying the boundary values
(S:2.62.a) and (S:2.62.b), and utilising the kernel splitting (S:2.1) results in

F (1)
1,S,�(�)

4⇡J�(�)
= �D(1)

1,S,+(�)J+(�) +
S(1)(�)

J�(�)
, (S:2.66)

where F (1)
1,S,� and D(1)

1,S,+ are defined in an analogous way to section S:2.2.1. We now note

that the only poles of S(1) in M� are where � = ��
m
, �

l
. Therefore, we may apply pole

removal to obtain the additive factorisation

S(1)(�)

J�(�)
=

1X

m=�1

Su,r,(1)
m

(� � ��m)J�(�
�
m)

+
1X

l=�1

P1
l2=�1 fl,l2Fl2(

�
l
)

(� � �
l
)J�(

�
l
)

| {z }
+

+
S(1)(�)

J�(�)
�

1X

m=�1

Su,r,(1)
m

(� � ��m)J�(�
�
m)

�
1X

l=�1

P1
l2=�1 fl,l2Fl2(

�
l
)

(� � �
l
)J�(

�
l
)

| {z }
�

, (S:2.67)

where

Su,r,(1)
m

=Su,r

m
+
X

l1,l2

fl1,l2
Fr,�

l2,m�
��m � �

l1

� ,

and Fr,�
l2,m

are the residues of Fl2(�) at the acoustic modes � = ��
m
, defined in (S:6.14).

Therefore, (S:2.66) becomes

F (1)
� (�)

4⇡J�(�)
� S(1)(�)

J�(�)
+

1X

m=�1

Su,r,(1)
m

(� � ��m)J�(�
�
m)

+
1X

l=�1

P1
l2=�1 fl,l2Fl2(

�
l
)

(� � �
l
)J�(

�
l
)

= �D(1)
1,S,+(�)J+(�) +

1X

m=�1

Su,r,(1)
m

(� � ��m)J�(�
�
m)

+
1X

l=�1

P1
l2=�1 fl,l2Fl2(

�
l
)

(� � �
l
)J�(

�
l
)

. (S:2.68)

We now apply the typical Wiener–Hopf argument of section S:2.2.1 and conclude that

D(1)
1,S(�) =

1X

l=�1

T1,S,l

� � �
l

· 1

J+(�)
+

1X

m=�1

R1,S,m

� � ��m
· 1

J+(�)
,

where

R1,S,m =
Su,r,(1)
m

J�(�
�
m)

, T1,S,l =

P1
l2=�1 fl,l2Fl2(

�
l
)

J�(
�
l
)

.

S:2.5.2. Solution to second Wiener–Hopf problem – D(2)
1,S

Taking a Fourier transform of (S:2.61) for n = 2, applying the boundary value
(S:2.63.a), and utilising the kernel splitting (S:2.1) results in

F ⇤(2)
1,S,+(�)

4⇡J+(�)
= �

⇣
D⇤(2)

1,S,�(�) +D⇤(2)
1,S,+(�)

⌘
J�(�) +

S⇤(2)(�)

J+(�)
, (S:2.69)
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where F ⇤(2)
1,S,+, D

⇤(2)
1,S,± and S⇤(2) are defined in an analogous way to section S:2.2.2.

Similarly to section S:2.3.2, we may use the downstream boundary values (S:2.63.b) to
write

D⇤(2)
1,S,+(�) =�

1X

l=�1

S1,S,le�i�
l c�

i(�0 � �
l
)(� � �

l
)
�

1X

n=0

A1,S,ne�i✓�n c�

i(✓�n � �
l
)(� � ✓�n )

�
P ⇤(2)
1,S

� � �0
,

(S:2.70)

where A1,S,n and S1,S,l are defined in an analogous way to section S:2.3. Substitution of
(S:2.70) into (S:2.69), application of the additive factorisation (S:2.5), and an analogous
version of (S:2.67) yields

F ⇤(2)
1,S,+(�)

4⇡J+(�)
�

1X

l=�1

S1,S,le�i�
l c�

i(�0 � �
l
)

h
J̃�(�,

�
l
)
i

+
�

1X

n=0

A1,S,ne�i✓�n c�

i(✓�n � �0 )

h
J̃�(�, ✓

�
n
)
i

+

� S⇤(2)(�)

J+(�)
+

1X

m=�1

S⇤d,r,(2)
m

(� � �+m)J+(�
+
m)

� P ⇤(2)
1,S

h
J̃�(�,

�
0 )
i

=
1X

l=�1

S1,S,le�i�
l c�

i(�0 � �
l
)(� � �

l
)

h
J̃�(�,

�
l
)
i

�
+

1X

n=0

A1,S,ne�i✓�n c�

i(✓�n � �0 )

h
J̃�(�, ✓

�
n
)
i

�

� J�(�)D
⇤(2)
1,S,�(�) +

1X

m=�1

S⇤d,r,(2)
m

(� � �+m)J+(�
+
m)

+ P ⇤(2)
1,S

h
J̃�(�,

�
0 )
i

�
. (S:2.71)

By applying a similar argument to section S:2.2.2, we conclude that each side of the
above equation must be equal to zero. Multiplying both sides by � and letting |�| ! 1
in M+, the left-hand side of (S:2.71) gives the value of the wake coe�cient

P ⇤(2)
1,S =�

1X

l=�1

S1,S,le�i�
l c�

i(�0 � �
l
)

·
J�(

�
l
)

J�(
�
0 )

�
1X

n=0

A1,S,ne�i✓�n c�

i(✓�n � �0 )
· J�(✓

�
n
)

J�(
�
0 )

+
1X

m=�1

U1,S,m

i(�+m � �0 )
· 1

J�(
�
0 )

, (S:2.72)

where

U1,S,m =i(�+
m
� �0 ) ·

S⇤d,r,(2)
m

J+(�
+
m)

.

Substituting the downstream boundary data (S:2.70) and the wake coe�cient (S:2.72)
into the Wiener–Hopf equation (S:2.71) gives the final expression

D(2)
1,S(�) =�

1X

l=�1

S1,S,lei(��
�
l )c�

i(� � �0 )(� � �
l
)
·
J�(

�
l
)

J�(�)
�

1X

n=0

A1,S,nei(��✓
�
n )c�

i(� � �0 )(� � ✓�n )
· J�(✓

�
n
)

J�(�)

�
1X

m=�1

U1,S,mei�c�

i(� � �0 )(� � �+m)
· 1

J�(�)
.

Similarly to previous sections, the only poles of D⇤(2)
1,S (�) in the upper half plane are at

the zeros of J�(�).
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S:2.5.3. Solution to third and fourth Wiener–Hopf problems – D(3)
1,S , D

(4)
1,S

The solution to the coupled 3rd and 4th Wiener–Hopf equations is identical to that in
previous sections, except

D(2)
r,S,k

=
�ei✓

+
k c�

i(✓+
k
� �0 )J

0
�(✓

+
k
)

( 1X

l=�1

S1,S,le�i�
l c�

✓+
k
� �

l

· J�(�l )

+
1X

n=0

A1,S,ne�i✓�n c�

✓+
k
� ✓�n

· J�(✓�n ) +
1X

m=�1

U1,S,m

✓+
k
� �+m

)
.

S:3. Background flow analysis

In this section we detail the solution of the steady background flow. We shift the
coordinate system z� 7! z� � 1 so that the leading-edge of the zeroth aerofoil is at
z� = �1.
We consider an ansatz for the complex velocity of the form

�(z�) =
1

2(d+ is)

Z 1

�1
�(⌧)

✓
coth

✓
⇡i (⌧ � z�)

d+ is

◆
� 1

◆
d⌧, (S:3.1)

where �(⌧) represents a distribution of sources, sinks and vorticity arranged on the chord
line so that

q(z�)� iµ(z�) = �i↵+ �(z�).

The problem is now to find �, which we decompose into real and imaginary parts as

�(⌧) = �r(⌧) + i�i(⌧).

In a similar way to the unstaggered case considered in Baddoo & Ayton (2018), we may
consider the limits of �(z�) as z� ! t±, (where t 2 [�1, 1]) via the Modified Plemelj
Formula (Baddoo & Ayton 2018, Appendix A). Taking the di↵erence between the limits
on the upper and lower sides, and equating imaginary parts yields

�i(t) = �2y0
th
(t).

Conversely, summing �(z�) either side of the chord lines the singular integral equation

⌃u±(t)� 2i(y0
c
(t)� ↵) =

1

2(d+ is)
�
Z 1
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�(⌧)
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✓
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� 1

◆
d⌧. (S:3.2)

We now consider the imaginary part of (S:3.2). It is precisely at this point that we diverge
from the small-stagger solution in Baddoo & Ayton (2018). In particular, the imaginary
part of the right-hand side of (S:3.2) does not result in a simple expression amenable to
typical Riemann–Hilbert methods. Instead, we have the singular integral equation

4⇡(y0
c
(t)� ↵) = �

Z 1

�1
(�2y0

th
(⌧)Kr(⌧, t) + �r(⌧)Ki(⌧, t)) d⌧, (S:3.3)

where

Kr(⌧, t) = Re
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✓
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,
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� 1

◆�
.
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We note that Ki is a singular operator: as ⌧ ! t we have

Ki(⌧, t) ⇠
1

⌧ � t
.

Consequently, we separate the singular and regular parts of Ki and write

Ki(⌧, t) =
1

⌧ � t
+ K̃i(⌧, t), (S:3.4)

where

K̃i(⌧, t) =

8
>>>><

>>>>:

Im
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d+ is
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� 1
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� 1

⌧ � t

�
, for t 6= ⌧.

Consequently, we may now express (S:3.3) as the singular integral equation

�
Z 1

�1

�r(⌧)

⌧ � t
d⌧ +

Z 1

�1
�r(⌧)K̃i(⌧, t)d⌧ = f(t), (S:3.5)

where the forcing term f is given by

f(t) = 4⇡(y0
c
(t)� ↵)� 2�

Z 1

�1
y0
th
(⌧)Kr(⌧, t)d⌧.

Note that the second integral in (S:3.5) is not considered in the principal value sense
because K̃i is regular for all (t, ⌧) 2 [�1, 1]2.
This form of singular integral is amenable to numerical methods by expanding �r

into a suitable series of basis functions. This method was first proposed by Erdogan
& Gupta (1972), who proposed an expansion of the unknown function �r as a series
of weighted Chebyshev polynomials. This expansion accurately captures the endpoint
behaviour of �r, which necessarily possesses a square root singularity and zero at the
leading- and trailing-edge respectively. However, the weighted Chebyshev expansion is
entirely appropriate for the present problem, and is widely used in isolated aerofoil
analyses (Glauert 1926; Rienstra 1992).
Accordingly, we expand �r as a series of weighted Chebyshev polynomials in the form

�r(t) = �r,0

r
1� t

1 + t
+
p

1� t2
1X

n=1

�r,n Un�1(t), (S:3.6)

where Un represent the Chebyshev polynomials of the second kind and �r,n represent
unknown coe�cients. The Chebyshev polynomials Un may be expressed as

Un(t) =
sin [(n+ 1)✓]

sin(✓)
, t = cos(✓).

Moreover, they satisfy the orthogonality relation
Z 1

�1

p
1� ⌧2 Un(⌧)Um(⌧)d⌧ = �n,m

⇡

2
.

In order to apply the expansion (S:3.6) to the singular integral equation (S:3.5), we use
the finite Hilbert transforms

�
Z 1

�1

p
1� ⌧2

Un�1(⌧)

⌧ � t
d⌧ = �⇡ Tn(t), (S:3.7)
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�
Z 1
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r
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= �⇡, (S:3.8)

where Tn are the Chebyshev polynomials of the first kind.
We now substitute (S:3.6) into (S:3.5) and apply the identities (S:3.7) and (S:3.8) to

obtain

�⇡�r,0 � ⇡
1X
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�r,nTn(t) +

Z 1

�1
�r(⌧)K̃i(⌧, t)d⌧ = f(t). (S:3.9)

The remaining integral in the above expression is amenable to Chebyshev-Gauss quadra-
ture. We note the quadrature rules (Olver et al. 2010, §3.5)
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Consequently, we may express (S:3.9) as
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We now truncate the infinite sums in (S:3.10) at N and collocate at the zeros of UN+1

to obtain an (N + 1)⇥ (N + 1) linear system for the N + 1 unknown coe�cients �r,n.

S:3.1. Upstream and downstream flow decompositions

We now use the solution for � (S:3.6) to express the background flow (S:3.1) in a form
that is amenable to the Wiener–Hopf method. Essentially, we wish to express the mean
flow perturbation (S:3.1) in a Fourier-type basis, as this will yield a simple form in the
spectral plane under a Fourier transform.
It is straightforward to show that

coth

✓
⇡i(⌧ � z�)

d+ is

◆
� 1 = � 2

1� exp
⇣

2⇡i(⌧�z�)
d+is

⌘ .
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The above expression can be expanded as a geometric series depending on whether z� is
upstream or downstream of the cascade:

coth
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Substituting this into the expression for the mean flow (S:3.1) yields the modal repre-
sentation
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(S:3.11)

where the coe�cients are given by

v±
n
=

1

d+ is
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✓
⌥2⇡in⌧

d+ is

◆
d⌧.

Analytical expressions for the above coe�cients are available by using results for the finite
Fourier transforms of weighted Chebyshev polynomials (Olver et al. 2010, §18.17.16),
but it is also straightforward to integrate the above numerically using Gauss–Chebyshev
quadrature. Note that v�0 is expressible in terms of the circulation � as

v�0 = � �

d+ is
.

Integrating (S:3.11) yields analytic forms for the full velocity potential and streamfunc-
tion. We select the constant of integration so that the leading-edge z� = �1 corresponds
to �(�1) + i (�1) = 0. In the upstream region, (x+ 1)s < �1yd, we have

�(z�) + i (z�) = (1� i✏↵) (z� + 1) (S:3.12)
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and in downstream region, (x� 1)s > yd, we have
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S:4. Asymptotic behaviour of half-range Fourier integrals

Before we may apply the Wiener–Hopf argument, we must determine the asymptotic
behaviour of the half range Fourier transforms terms using the physical leading-edge
condition. Here we consider the symmetric solution h1,⌃ , although the approach can be
generalised to each of the other components. Firstly, the singularity of the velocity field
at the leading-edge (� = 0) can be, at worst, integrable. Therefore, we can write

⌃0


@h1,⌃

@ 

�
(�) ⇠ A�⌘, as �! 0�,

for some constant A and �1 < ⌘ < 0. By adapting result (1.74) from (Noble 1958, p.
36), we determine that
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where � here refers to the Gamma function.
We also assume that �0[h1,⌃ ] does not admit singular behaviour at the leading-edge:

this assumption is physically supported since, if it did not hold, the pressure at the
leading-edge would be non-integrable and result in an infinite force there. Therefore,
�0[h1,⌃ ](0) is finite. Consequently, we may apply integration by parts to obtain
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(S:4.1.b)

and Riemann–Lebesgue lemma tells us that the second term in the above expression is
o(��1).

S:5. List of identities

In this section we present some identities that are used throughout the paper.

S:5.1. Radical equation

Consider the equation

s�⇣ = ±
�
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�
+ d�� � 2m⇡

�
. (S:5.1)
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We can see that �+
m

must correspond to the “+” equation, because the branch cut on
the right-hand side gives positive imaginary part. Therefore, the roots of (S:5.1) are
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±
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where
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This solution gives us several expressions that are useful for simplification at various
points in the analysis:
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Accordingly, we have the following expressions for some relevant residues:
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S:5.2. Integrals

We note the integrals
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where ⇣ =
p
k2w2 � �2. These may be calculated via contour integration and specifying

the branch of ⇣ to have positive imaginary part.

S:5.3. Doubly-infinite sums

For 0 <  1 < s�, we have the following identities
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It should be noted that, although these sums are strictly only valid in the Wiener–Hopf
strip where Im[⇣] > 0, they also represent the analytic continuation of the sums from the
strip to the entire complex plane.



Analytic gust–cascade interaction – supplementary material 27

S:6. Analysis of source terms

In this section, we present our novel, quasi-analytic method of decomposing the source
terms arising in the rapid distortion theory framework. The inclusion of the source
terms in the modified Helmholtz equation is an essential feature of the analysis and is
generalisable to similar problems. Since the solution terms satisfies the quasi-periodicity
relation (3.14), we may restrict our analysis to a single infinite channel of height s�,
and extrapolate to the entire domain. For example, in (3.28) we used the quasi-periodic
relation to reduce the transformed source terms from an integral in the entire space
to an integral along a channel. We now split the region of interest into the upstream
(�s� <  d�), downstream (�s� >  d�+c�s�) and inter-blade ( d� < �s� <  d�+c�s�)
regions.

We will first outline our decomposition of the relevant source terms into exponential
functions. Then we will analyse the Fourier transformation of the decompositions in
each of the three regions. Finally, we provide some details of how we invert the Fourier
transform and obtain the final acoustic field.

S:6.1. Exponential decomposition of source terms

In this section we perform the exponential decomposition of the source terms. This
step is necessary in order to know the exact structure of the transformed source terms
in the complex plane, which is a requirement for the application of the Wiener–Hopf
method.

In each region (upstream, downstream and inter-blade), we decompose the source terms
into Fourier series (S:6.2, S:6.4, S:6.7). We denote the total source contribution to (3.28)
by

S(�) = Su(�) + Sd(�) + Si(�),

where u, d, i correspond to the upstream, downstream and inter-blade regions as defined
in section S:6.2.

S:6.1.1. Upstream region decomposition

In the upstream region, the source terms satisfy the quasi-periodic relation (3.14).
Accordingly, we may express the upstream source terms as a series of exponential
functions in the form
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which we write as
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where

M̃+
m

= s�M
+
m
+ �0 +

2⇡d�m

�2
�

.

S:6.1.2. Downstream region decomposition

The source terms in the downstream region take a more complicated form than those in
the upstream region. This increased complexity can be attributed to two factors. Firstly,
the perturbation to the background velocity in the horizontal direction, q, decays in the
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Resonance with O(1) terms?

yes no

Quasi-periodic?
yes S�

P,M�
m

S�
P,��

m

no S�
N,�

0 ,±
S�
N,N�

�,n

Table 3.2: A summary of the meaning of the coe�cients of the source terms (S:6.3) in
the downstream region.

upstream region, whereas in the downstream region q tends to a constant value as a result
of the cascade deflecting the flow. Consequently, some source terms that vanish in the
upstream region do not vanish in the downstream region. These terms cause resonance
with the O(1) solution, and this issue is resolved in section S:7. Secondly, the source
terms in the downstream region possess contributions that do not automatically satisfy
the quasi-periodic relation (3.14). For example, the �0 mode in (S:1.3) does not satisfy
(3.14) and, therefore, neither does qh0 in (3.4). Consequently, we express the downstream
source terms as
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The role of the coe�cients is summarised in table 3.2. We rewrite (S:6.3) as

Sd(�, ) =
X

M
�
m

S�
P,M

�
m
exp

h
�iM̃�

m
(�� c�)

i
exp


i
⇣
��fm + d�M̃

�
m

⌘  

s�

�

+
1X

m=�1
S�
P,�

�
m
exp

⇥
�i��

m
(�� c�)

⇤
exp

⇥
�i⇣�

m
 
⇤

+
X

N
�
�,n

S�
N,N

�
�,n

exp
h
�iN�

�,n
(�� c�)

i
exp

h
�iN�

 ,n
 
i

+
X

±
S�
N,

�
0 ,± exp

⇥
�i�0 (�� c�)

⇤
exp

h
⌥i⇣


�
0
 
i
, (S:6.4)

where

M̃�
m

= s�M
�
m

+ �0 +
2⇡d�m

�2
�

.

S:6.1.3. Inter-blade region decomposition

We seek to express the source terms in the inter-blade region in a similar way to
previous sections. Unfortunately, the decaying Fourier series representation used for the
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Figure S:6.1: The two-dimensional oblique Bravais lattice for source terms in the inter-
blade region.

background flow in previous sections is not applicable since the kernel of the background
cascade flow cannot be expanded as a sum of exponentials. Therefore, we seek a Fourier
series representation of the entire source terms in the inter-blade region. Strictly speaking,
this representation is only necessary for the mean flow terms since we have the exponential
form of the acoustic field in this region. However, the structure of the O(1) acoustic field
in the inter-blade region is highly complex, so we choose to decompose the entire source
terms using this method.
A straightforward 2-D Fourier series where the period is the inter-blade region will

break down. This is because the source terms are discontinuous either side of the blade
in (�, )-space and, more importantly, posses (integrable) singularities at the leading-
edge of every blade. If we were to take a naive Fourier series where the period window
is simply P of figure S:6.1, we would not be able to accurately capture the behaviour at
the leading- and trailing-edges.
We parametrise every point in the plane z = (�, ) as

z = x1
a1

|a1|
+ x2

a2

|a2|
, (S:6.5)

where a1 = (2c�, 0) and a2 = (2d�, 2s�) are the periods of the extended source terms.
Rearranging (S:6.5) results in

x1 = �1 �
d�
s�
 , x2 =

��

s�
 1,

and consequently, the source terms in the inter-blade region may be written in a Fourier
series as
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(S:6.6)
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which reduces to
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where the coe�cients Si
l1,l2

are defined by
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S:6.2. Transformation of source terms

We segregate the integral (3.28) into upstream, downstream and inter-blade contribu-
tions, as in the previous section, and write

S(�) = Su(�) + Si(�) + Sd(�),

where

Sx(�) = � 1
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for x = u, i, d, and Sx

�
are defined as
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S:6.2.1. Upstream region transformation

We may used the upstream decomposition of the source terms (S:6.2) to evaluate the
upstream Fourier transform of the source terms as

Su

�
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P,M

+
m
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Therefore we may calculate the constituent parts of the transformed source terms in
(S:6.9) as
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The residues of Su(�) at � = ��
m

are given by
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p
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where we have used the identities (S:5.5) and (S:5.2).
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S:6.2.2. Downstream region transformation

Similarly, we may used the downstream decomposition of the source terms (S:6.4) to
evaluate the downstream Fourier transform of the source terms as
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Therefore, we may calculate (S:6.9) as
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Using (S:5.6), we calculate the residues of Sd(�) at � = �+
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as
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S:6.2.3. Inter-blade region transformation

We may calculate the inter-blade Fourier transform by substituting in our exponential
expression (S:6.7) to obtain

Si

�
(�, 1) =Si,(1)

�
(�, 1) + Si,(2)

�
(�, 1),
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where
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Using these representations, the  1 integral in (S:6.9) may now be performed to obtain

Si(�) = Si,(1)(�) + Si,(2)(�),

where
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S:6.3. Inversion of source terms

When we invert the Fourier transform in section 4, we encounter integrals of the form
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In the special case a(�) = i(�0
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During the inversion of the Fourier transform, the ensuing �-integral is then closed in
the upper or lower half plane, depending on which region of the physical domain is under
consideration. In particular, the residues of the function in the curly brackets at � = �±
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are given by
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S:7. Resolving resonance

In this section we observe that the regular perturbation expansion (3.1) breaks down
when � = O(✏�1) in the downstream region. In particular, the O(✏) solution grows to
O(1) and therefore has the same magnitude as the leading-order solution. Consequently,
the series (3.1) is no longer an asymptotic expansion of the solution. The growth of the
O(✏) solution is caused by resonance between the O(✏) solution and terms in the O(1)
solution. We now show how to regularise our solution by appealing to a multiple-scales
argument so that the solution is valid in a larger region up to � = O(✏�2).
We first consider the resonance arising in the source term solution h1,S , and then apply

a similar argument to regularise the resonance arising in the h1,� solution.

S:7.1. Resonance in the h1,S solution

In the downstream region we have
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where the coe�cients are defined as
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and the inhomogeneous functions are defined as
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It may be verified that applying the Helmholtz operator (3.3) to the inhomogeneous
functions yields
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so that (S:7.1) is in fact the solution to the inhomogeneous Helmholtz equation.
We now combine the h1,S solution (S:7.1) with the O(1) solution h0 (S:1.3) to write
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We note that the I�
P,�

�
m

terms are proportional to ✏�. These are secular terms (van

Dyke 1964), and present a problem for our asymptotic series: the expansion (3.1) breaks
down when � = O(✏�1). Moreover, the solution does not satisfy the Sommerfeld radiation
condition as the acoustic field is not bounded in the far-field when even a single mode is
cut-on. Consequently, we need a way of regularising these terms.

We now combine the resonant I�
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terms with the terms on line (S:7.3) and write
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and we have ignored O(✏2) terms. We now note that, when s�(�� c�)� d� = O(1), we
may express the term in the curly brackets in (S:7.4) as

1� i✏ (s�(�� c�)� d� )OS,m = exp [�i✏ (s�(�� c�)� d� )OS,m] +O((✏OS,m)2),

In particular, the above relation is exact along the matching line s�(�� c�)� d� where
the downstream region meets the lower triangular region. Consequently, we may express
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(S:7.4) as
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(S:7.5)

where we have introduced the modified modes

�̃�
S,m

= ��
m
+ ✏s�OS,m,

⇣̃�
S,m

= ⇣�
m
� ✏d�OS,m.

Although we have apparently performed an illegal maneuver in regularising (S:7.4), the
resulting function satisfies the required inhomogeneous Helmholtz equation up to O(�✏2).
Applying the Helmholtz operator to h̃0,S as defined in (S:7.5) yields

L
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+O(�✏2),

which is the form of the desired forcing terms.
We now note that (S:7.5) is exactly the solution that would have been obtained if a

multiple-scales perturbation expansion had been applied to the downstream region as
opposed to the regular perturbation series (3.1). In that case, we would have written

h̃0,S(�, ) = H0(�,�, ) + ✏H1(�,�, ) + · · ·

where � = ✏�, and consequently obtained the solution (S:7.5). Accordingly, we have
obtained the multiple-scales solution albeit via a circuitous route. The solution could be
further expanded into the region � = O(✏�2) via a second multiple-scales type argument,
but it is not necessary in the present work.

S:7.2. Resonance in the h1,� solution

We now apply a similar procedure to regularise terms in the h1,� problem so that the
solution is valid in the region � = O(✏�1). In the downstream region, we have
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where
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. (S:7.6)

In a similar way to the previous section, we combine the h1,� solution with the h0 solution
to write

h0(�, ) + ✏h1,� (�, ) =
1X
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(S:7.7)
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+
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.

Again, we note that the terms on line (S:7.8) are proportional to ✏� and, accordingly, the
asymptotic expansion (3.1) breaks down when � = O(✏�1). We combine these resonant
terms with the terms on line (S:7.7) and write

h̃0,� (�, ) =
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{1� i✏ (s�(�� c�)� d� )O�,m}

⇥ exp
⇥
�i

�
��
m
�+ ⇣�

m
 
�⇤

, (S:7.10)
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where
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�
m
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m
+ kM2

1�)
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p
k2w2 � f2

m

,

and we have ignored O(✏2) terms and used the definition (S:1.4.b). Similarly to the
previous section, we may express (S:7.10) as
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(S:7.11)

where we have introduced the modified modes

�̃�
�,m

= ��
m
+ ✏s�O�,m,

⇣̃�
�,m

= ⇣�
m
� ✏d�O�,m.

When combined with the term on line (S:7.9), the ensuing function satisfies the homo-
geneous Helmholtz equation up to O(�✏2). Moreover, we have

�0

h
h̃0,�

i
(�) = 0,

and the jump in acoustic potential (3.35e) is obtained exclusively by the term on line
(S:7.9).

S:7.3. Summary

In conclusion, we can resolve the resonance terms by modifying the terms proportional
to e�i(��

m�+⇣
�
m ). In this context, we change the acoustic modes ��

m
and ⇣�

m
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and rescale that part of the solution by a factor of exp [i✏s�c�(OS,m +O�,m)].

S:8. Coe�cients of acoustic potential function

In this section we define the coe�cients of the acoustic potential function found in
section 4. In this section we use the notation
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In the downstream region, we define
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and H�
S,m

and H�
�,m

are defined in section S:7.
The coe�cients responsible for enforcing the boundary conditions on the blades are

given by
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The coe�cients responsible for enforcing the Kutta condition in the inter-blade down-
stream region are
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The coe�cients responsible for enforcing the Kutta condition in the downstream region
are
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The inhomogeneous functions in the upstream and inter-blade regions are
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s2
�

�2
�

·
exp

h
�i

⇣
�M̃+

m
�  

s�
(��fm + d�M̃+

m
)
⌘i

(M̃+
m � �+m)(M̃+

m � ��m)
,

Ii
l1,l2

(�, ) = �
s2
�

�2
�

·
exp

h
�i

⇣
�
l1
��  

s�

�
��fl2/2 + d�

�
l1

�⌘i

(�
l1
� �+

l2/2
)(�

l1
� ��

l2/2
)

.

Finally, the inhomogeneous functions in the downstream region are defined in section
S:7.
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