
Supplementary Material A. Fundamental vertical mode waves

Here we present how to determine the fundamental vertical mode profile of an internal
wave of frequency ω for an arbitrary stratification profile ρ0(z). The mode-1 wave
contains most of the internal wave energy and corresponds to the component of largest
wavelength. The modal analysis relies on a linearization of (2.1)-(2.4) around a static
background state satisfying ρ = ρ0(z) and dp0/dz = −ρ0(z)g. The small perturbations
in ρ and p associated with the internal wave motion are denoted by primed fields, such
that ρ = ρ0(z) + ρ′(x, z, t) and p = p0(z) + p′(x, z, t).

Under these assumptions, the linearized system becomes

∂xu+ ∂zw = 0, (A 1)
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is the buoyancy frequency. Combining (A 1)-(A 4), we end up with a single equation to
be solved for the vertical velocity:(
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w(x, z, t) = 0. (A 6)

Once w is determined, all remaining perturbation profiles are resolved (Gerkema &
Zimmerman 2008).

A vertical mode correspond to a solution of (A 6) that has the form of a plane wave
propagating in the x direction, with temporal frequency ω and wavenumber kx:

w(x, z, t) = Re {W (z) exp(i(kxx− ωt))} , (A 7)

with i is the imaginary number and Re {·} denotes the real part of the complex argument.
Substitution of (A 7) in (A 6) results in the ordinary differential equation for W (z)

d2W

dz2
+ k2x

(
N2(z)

ω2
− 1

)
W = 0. (A 8)

For z ∈ [0, H], both top and bottom being horizontal surfaces, no-flux boundary condi-
tions lead to W (0) = W (H) = 0. For a Sturm-Liouville equation as (A 8), each solution
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(
k
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is unique and orthogonal to all others. The

general solution of (A 6) consists of the superposition of solutions in the form (A 7), with

the W (n)(z) and k
(n)
x corresponding to each vertical mode. The fundamental mode, which

we want to find, is the mode associated to the smallest wavenumber k
(0)
x .

For a general stratification ρ0(z), and thus a general N2(z), (A 8) cannot be solved
analytically. We solve (A 8) numerically, by using a finite difference approach. Let
w = (w0,w1, . . . ,wM+1)ᵀ be the vector with the discretized values of W (z) at the points
z0, . . . , zM+1 uniformly distributed in [0, H]. We impose the homogeneous boundary



conditions w0 = wM+1 = 0 and use centered finite differences to approximate the second
derivatives in (A 8). The discretized version of (A 8) becomes the linear system

Aw + k2xBw = 0, (A 9)

where

Aij =


−2/∆z2 for i = j,

1/∆z2 for i = j ± 1,

0 otherwise.

Bij =

{
N2(zi)/ω

2 − 1, for i = j,

0 otherwise.

with 1 6 i, j 6 M . (A 9) is a generalized eigenvalue problem that can be solved

numerically, with generalized eigenvalues k
(n)
x and eigenvectors w(n).

In the event of all Bii < 0, which corresponds to a stratification such that N(z) < ω
everywhere, (A 9) has no positive eigenvectors and the solutions will correspond to an
evanescent wave (Gerkema & Zimmerman 2008). The mode w(0) corresponding to the

smallest wavenumber k
(0)
x , numerically computed from (A 9), is a discretization for the

continuum fundamental mode vertical velocity W (0)(z).
Finally, from (A 1) the horizontal component vertical mode is also a plane wave

u(x, z, t) = Re {U(z) exp(i(kxx− ωt))} , (A 10)

and the modes U (n)(z) can be computed from the W (n)(z). The fundamental mode
horizontal velocity component U (0)(z), in particular, relates to the vertical component
W (0)(z) as
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and u = U (0)(z) sin(ωt) is what is forced at the inlet boundary on the left of the domain
as detailed in §2.1. The derivative dW (0)/dz is approximated from the discretized w(0)

using centered finite differences. The solution of the resulting linear system provides a
discretized u(0) used to reconstitute U (0)(z). In the main text, for the sake of simplicity,
we drop the subscript and note U(z) ≡ U (0)(z).


