Supplementary Material A. Fundamental vertical mode waves

Here we present how to determine the fundamental vertical mode profile of an internal
wave of frequency w for an arbitrary stratification profile pg(z). The mode-1 wave
contains most of the internal wave energy and corresponds to the component of largest
wavelength. The modal analysis relies on a linearization of (2.1)-(2.4) around a static
background state satisfying p = po(z) and dpg/dz = —pp(2z)g. The small perturbations
in p and p associated with the internal wave motion are denoted by primed fields, such
that p = po(2) + o/ (2, ,t) and p = po() + ' (x, 2, ).

Under these assumptions, the linearized system becomes

Ozu~+ d,w =0, (A1)
1
Oru = —% zpl7 (A 2)
1 /
dw = ——d.p' — g, (A3)
P00 P00
2
aup - 20N o, (A4)

where

~ [ g dpo
N(z) = *%E (A5)

is the buoyancy frequency. Combining (A 1)-(A 4), we end up with a single equation to
be solved for the vertical velocity:
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Once w is determined, all remaining perturbation profiles are resolved (Gerkema &
Zimmerman 2008).

A vertical mode correspond to a solution of (A 6) that has the form of a plane wave
propagating in the x direction, with temporal frequency w and wavenumber k,:

w(z, z,t) = Re {W(2) exp(i(kyzx — wt))}, (A7)

with ¢ is the imaginary number and Re {-} denotes the real part of the complex argument.
Substitution of (A7) in (A 6) results in the ordinary differential equation for W (z)
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For z € [0, H], both top and bottom being horizontal surfaces, no-flux boundary condi-
tions lead to W(0) = W(H) = 0. For a Sturm-Liouville equation as (A 8), each solution
%

W) (z) corresponding to a possible (kg(bn ) is unique and orthogonal to all others. The

general solution of (A 6) consists of the superposition of solutions in the form (A7), with

the W (2) and k;") corresponding to each vertical mode. The fundamental mode, which
we want to find, is the mode associated to the smallest wavenumber k;o).

For a general stratification pg(z), and thus a general N?(z), (A 8) cannot be solved
analytically. We solve (A 8) numerically, by using a finite difference approach. Let
w = (wo, W1,...,wp+1)T be the vector with the discretized values of W (z) at the points

205 -+, 2p+1 uniformly distributed in [0, H]. We impose the homogeneous boundary



conditions wg = wjys+1 = 0 and use centered finite differences to approximate the second
derivatives in (A 8). The discretized version of (A 8) becomes the linear system
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with 1 < 4,7 < M. (A9) is a generalized eigenvalue problem that can be solved
numerically, with generalized eigenvalues k;(vn) and eigenvectors w(™).

In the event of all B;; < 0, which corresponds to a stratification such that N(z) < w
everywhere, (A 9) has no positive eigenvectors and the solutions will correspond to an
evanescent wave (Gerkema & Zimmerman 2008). The mode w(®) corresponding to the
smallest wavenumber k:;(co), numerically computed from (A9), is a discretization for the
continuum fundamental mode vertical velocity W) (z).

Finally, from (A 1) the horizontal component vertical mode is also a plane wave

u(z, z,t) = Re {U(z) exp(i(kzz — wt))}, (A 10)

and the modes U™ (z) can be computed from the W (z). The fundamental mode
horizontal velocity component U (z), in particular, relates to the vertical component
WO (2) as
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and u = U (2) sin(wt) is what is forced at the inlet boundary on the left of the domain
as detailed in §2.1. The derivative dW () /dz is approximated from the discretized w(®)
using centered finite differences. The solution of the resulting linear system provides a
discretized u®) used to reconstitute U (O)(z). In the main text, for the sake of simplicity,
we drop the subscript and note U(z) = U (2).



