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1. Governing equations and boundary conditions

The linearised equations and boundary conditions are

∂ω

∂t
= ν

(
∂2ω

∂r2
+

1

r
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∂r
+

1

r2
∂2ω

∂θ2

)
(1.1)

∂2ψ

∂r2
+
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r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
= ω, (1.2)

∂η

∂t
+

(
1

r
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)
r=R0

= 0, (1.3)
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r

∂ψ

∂r
− 1

r2
∂2ψ

∂θ2

)
r=R0

= 0, (1.4)
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1

r

∂2ψ

∂r∂θ
− 1

r2
∂ψ

∂θ
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=
T

R2
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(
η +
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)
(1.5)

lim
r→∞

ω(r, θ, t) = finite, lim
r→∞

ψ(r, θ, t) = finite (1.6)

Note that in obtaining a linearised expression for (∇ · n)r=R0+η
, we have used the

following expressions for the (surface) divergence of n in cylindrical coordinates.

n =
∇F

|∇F | , ∇ · n ≈∇F ≡
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1,−1

r

∂η

∂θ
, 0

)
, (∇ · n)r=R0+η

≈ 1

R0

(
1− η
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)
− 1

R2
0

∂2η

∂θ2
.

(1.7)

In further analysis, we use governing equations 1.1 and 1.2 alongwith boundary conditions
1.3-1.6.
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2. Linear stability analysis - Normal modes

2.1. Discrete spectrum

We seek normal mode solutions of standing wave form and set,

η(θ, t) = a0 cos(mθ)

[
1

2
exp(σt) + c.c

]
, (2.1)

ω(r, θ, t) = sin(mθ)

[
1

2
Ω(r) exp(σt) + c.c.

]
, (2.2)

ψ(r, θ, t) = sin(mθ)

[
1

2
Ψ(r) exp(σt) + c.c

]
(2.3)

p(r, θ, t) = cos(mθ)

[
1

2
P(r) exp(σt) + c.c.

]
(2.4)

where c.c. stands for complex conjugate. Here Ω(r),Ψ(r) and P(r) are the eigenfunc-
tions while σ is related to it’s eigenvalue. We assume that a0 and m are real (the
latter restricted to only integer values for periodicity) while σ is allowed to be complex
(temporal analysis). Due to σ being complex, Ω(r),Ψ(r) and P(r) are complex functions
of a real argument as will be seen in subsequent algebra.

Substituting 2.1-2.4 into equations 1.1 and 1.2, we obtain[
d2Ω

dr2
+

1

r

dΩ

dr
−
(
m2

r2
+
σ

ν

)
Ω

]
exp(σt)

2
+ c.c. = 0 (2.5)

and [
d2Ψ

dr2
+

1

r

dΨ

dr
− m2

r2
Ψ− Ω

]
exp(σt)

2
+ c.c. = 0 (2.6)

If equations 2.5 and 2.6 are to hold at all time t, the coefficient of exp(σt)/2 (or
equivalently that of exp(σ̄t)/2), must be zero. The resultant equations are,

d2Ω

dr2
+

1

r

dΩ

dr
−
(
σ

ν
+
m2

r2

)
Ω = 0, (2.7)

d2Ψ

dr2
+

1

r

dΨ

dr
− m2

r2
Ψ = Ω (2.8)

Note that equation 2.7 has complex coefficients (since σ ∈ C). Consequently both Ω(r)
and Ψ(r) are complex functions of a real argument (equation 2.8 has real coefficients but
a complex inhomogenous term). The solution to the first of equations 2.14 is

Ω(r) = CKm (lr) +DIm (lr) (2.9)

where C,D are complex constants of integration (coefficients of equation 2.7 are complex
as σ ∈ C), l ≡

√
σ
ν and Im,Km are mth order, modified Bessel functions of the first and

second kind respectively. For preventing divergence of Ω(r) as r →∞, we set D = 0. In
doing this, we are inherently assuming that <(l) > 0†, since for fixed m (Abramowitz &
Stegun 1965),

lim
z→∞

Im(z) ∼ exp(z)√
2πz

, (2.10)

† <(z) and =(z) denote the real and imaginary part of z



Capillary waves on a hollow filament 3

which diverges as z →∞ only if <(z) > 0. We thus have Ω(r) = CKm (lr) and

d2Ψ

dr2
+

1

r

dΨ

dr
− m2

r2
Ψ = CKm (lr) (2.11)

The general solution to equation 2.11 can be written as a linear combination of the two
independent homogenous solutions v1(r) = rm and v2(r) = r−m and their Wronskian W
(see equation 2.2.13 in Prosperetti (2011)),

Ψ(r) =

[
α− C

∫ r v2(q)Km (q̂)

W (q)
dq

]
v1(r) +

[
β + C

∫ r v1(q)Km (q̂)

W (q)
dq

]
v2(r)

(2.12)

where α and β are real constants of integration (since coefficients of the left hand side of
equation 2.8 are real) whose value depends on the choice of the lower limits of integration
inside both the square brackets and q̂ ≡ q

√
σ
ν = ql. We choose the lower limit as infinity

and R0 in the first and second integrals respectively. With W (q) = − 2m
q , we obtain

Ψ(r) =

[
α+ C

∫ r

∞

q−m+1Km (q̂)

2m
dq

]
rm +

[
β − C

∫ r

R0

qm+1Km (q̂)

2m
dq

]
r−m

(2.13)

We set α = 0 to prevent divergence as r →∞ † and obtain,

Ψ(r) = C
[∫ r

∞

q−m+1Km (q̂)

2m
dq

]
rm +

[
β − C

∫ r

R0

qm+1Km (q̂)

2m
dq

]
r−m

(2.14)

The first integral inside the square brackets in equation 2.14 may be simplified as follows.

C
2m

∫ r

∞
q−m+1Km (q̂) dq =

C
2m

(ν
σ

)1−m
2

∫ r̂

∞
q̂−m+1Km (q̂) dq̂ (2.15)

where q̂ ≡ q
√

σ
ν = ql. Using the following identity (Weisstein 2001a),

d

dz

(
z−mKm(z)

)
= −z−mKm+1(z) (2.16)

we obtain,

C
2m

(ν
σ

)1−m
2

∫ r̂

∞
q̂−m+1Km (q̂) dq̂ = − C

2m

(ν
σ

)1/2
r−m+1Km−1 (r̂) (2.17)

Note that in writing the right side of equation 2.17, we have explicitly used the fact that
lim
q̂→∞

q̂−m+1Km−1(q̂) = 0 for any positive integer m. Using similar arguments, we can also

simplify the second integral in expression 2.14. Using the identity (Weisstein 2001b)

d

dz
(zmKm(z)) = −zmKm−1(z)

† This is because Km(z) decays as
√

π
2z

exp(−z) as z → ∞ and so the integral goes to zero
exponentially fast.



4 Farsoiya and Roy and Dasgupta

we obtain

C
2m

∫ r

R0

qm+1Km (q̂) dq =
C

2m

(ν
σ

)1+m
2

∫ r̂

R̂0

q̂m+1Km (q̂) dq̂

= − C
2m

(ν
σ

)1/2 [
rm+1Km+1 (r̂)−Rm+1

0 Km+1

(
R̂0

)]
(2.18)

where R̂0 ≡ R0

√
σ
ν . Combining expressions for the first and second integrals in equation

2.14, we obtain an expression for Ψ(r)

Ψ(r) =

[
− C

2ml
r−m+1Km−1 (r̂)

]
rm

+

[
β +

C
2ml

{
rm+1Km+1 (r̂)−Rm+1

0 Km+1

(
R̂0

)}]
r−m (2.19)

which can be re-written as

Ψ(r) = βr−m +
Cr

2ml

{
Km+1 (r̂)− Km−1 (r̂)

}
− CR0

2ml

(
r

R0

)−m
Km+1

(
R̂0

)
(2.20)

Using the following identity (Abramowitz & Stegun 1965)

Km+1(z)− Km−1(z) =
2m

z
Km(z) (2.21)

we simplify our expression for Ψ(r) and obtain,

Ψ(r) = βr−m +

( C
l2

)
Km (r̂)− CR0

2ml

(
r

R0

)−m
Km+1

(
R̂0

)
(2.22)

For further algebra, we need expressions for the first and second derivative of Ψ(r),

dΨ

dr
= −mβr−m−1 +

(C
l

)
K′m(r̂) +

C
2l

(
r

R0

)−m−1
Km+1

(
R̂0

)
(2.23)

d2Ψ

dr2
= m(m+ 1)βr−m−2 + CK′′m(r̂)− C

2l

m+ 1

R0

(
r

R0

)−m−2
Km+1

(
R̂0

)
(2.24)

where K′m(z) ≡ dKm(z)

dz
,K′′m(z) ≡ d2Km(z)

dz2
and so on. In order to satisfy the boundary

conditions, we need an expression for perturbation pressure. This is obtained from the
(linearised) momentum equation for the radial component of velocity i.e.,

∂ur
∂t

= −1

ρ

∂p

∂r
+ ν

(
∂2ur
∂r2

+
1

r

∂ur
∂r

+
1

r2
∂2ur
∂θ2

− ur
r2
− 2

r2
∂uθ
∂θ

)
(2.25)
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which may be re-written in terms of streamfunction ψ

1

ρ

∂p

∂r
=

1

r

∂2ψ

∂θ∂t
− ν

[
1

r3
∂3ψ

∂θ3
+

1

r2
∂2ψ

∂r∂θ
+

1

r

∂3ψ

∂r2∂θ

]
=
m cos(mθ)

r

[
1

2

{
σΨ− ν

(
d2Ψ

dr2
+

1

r

dΨ

dr
− m2

r2
Ψ

)}
exp(σt) + c.c.

]

=
m cos(mθ)

r

[
1

2

{
σΨ− νCKm(r̂)

}
exp(σt) + c.c.

]

= m cos(mθ)

[
1

2

{
σβr−m−1 − σC

2ml

(
r

R0

)−m−1
Km+1

(
R̂0

)}
exp(σt) + c.c.

]
(2.26)

Equation 2.26 can be integrated from r to ∞ to obtain

1

ρ
(p(∞, θ, t)− p(r, θ, t)) = cos(mθ)

[
1

2

{
σβr−m − σCR0

2ml

(
r

R0

)−m
Km+1

(
R̂0

)}
exp(σt) + c.c.

]
(2.27)

p(r, θ, t) = cos(mθ)

[
1

2
P(r) exp(σt) + c.c.

]
+ p(∞, θ, t) (2.28)

with P(r) ≡ ρ

{
− σβr−m +

σCR0

2ml

(
r

R0

)−m
Km+1

(
R̂0

)}
. Similar conclusions are

obtained from the θ momentum equation which is

∂uθ
∂t

= −1

ρ

1

r

∂p

∂θ
+ ν

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

+
1

r2
∂2uθ
∂θ2

− uθ
r2

+
2

r2
∂ur
∂θ

)
(2.29)

Equation 2.29 may be re-written in terms of streamfunction as

1

ρ

1

r

∂p

∂θ
= − ∂

2ψ

∂t∂r
+ ν

(
∂3ψ

∂r3
+

1

r

∂2ψ

∂r2
+

1

r2
∂3ψ

∂θ2∂r
− 1

r2
∂ψ

∂r
− 2

r3
∂2ψ

∂θ2

)
(2.30)

Using 2.3 in 2.30, we obtain

1

ρ

1

r

∂p

∂θ
= sin(mθ)

[{
− σdΨ

dr
+ ν

(
d3Ψ

dr3
+

1

r

d2Ψ

dr2
− m2

r2
dΨ

dr

− 1

r2
dΨ

dr
+

2m2

r3
Ψ

)}
1

2
exp(σt) + c.c.

]

1

ρ

1

r

∂p

∂θ
= sin(mθ)

[{
− σdΨ

dr
+ ν

(
d3Ψ

dr3
+

1

r

d2Ψ

dr2
− m2

r2
dΨ

dr

)
− ν

(
1

r2
dΨ

dr
− 2m2

r3
Ψ

)
}

1

2
exp(σt) + c.c.

]
(2.31)
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The derivative of 2.8 can be used to simplify equation 2.31. It may be re-written as

1

ρ

1

r

∂p

∂θ
= sin(mθ)

[{
− σdΨ

dr
+ ν

(
dΩ

dr
+

1

r2
dΨ

dr
− 2m2

r3
Ψ

)
− ν

(
1

r2
dΨ

dr
− 2m2

r3
Ψ

)
}

1

2
exp(σt) + c.c.

]
(2.32)

which further simplifies to,

1

ρ

1

r

∂p

∂θ
= sin(mθ)

[{
− σdΨ

dr
+ ν

dΩ

dr

}
1

2
exp(σt) + c.c.

]
(2.33)

Substituting the expressions for Ψ(r) and Ω(r), we obtain

1

ρ

1

r

∂p

∂θ
= sin(mθ)

[{
− σ

(
−mβr−m−1 +

(C
l

)
K′m(r̂) +

C
2l

(
r

R0

)−m−1
Km+1

(
R̂0

))

+ClνK′m(r̂)

}
1

2
exp(σt) + c.c.

]
(2.34)

which simplifies to,

∂p

∂θ
= sin(mθ)

[
ρ

{
σmβr−m − Cσ

2l

(
r

R0

)−m
R0Km+1

(
R̂0

)}1

2
exp(σt) + c.c.

]
(2.35)

Integrate equation 2.35 with respect to θ, we obtain

p(r, θ, t)− p(r, 0, t) = (cos(mθ)− 1)

[
ρ

{
− σβr−m

+
Cσ
2ml

(
r

R0

)−m
R0Km+1

(
R̂0

)}1

2
exp(σt) + c.c.

]
(2.36)

Comparing 2.36 with 2.27, we see that both lead to the same expression for p(r, θ, t) if we

set p(∞, θ, t) = 0 with p(r, 0, t) =

[
ρ

{
− σβr−m + Cσ

2ml

(
r
R0

)−m
R0Km+1

(
R̂0

)}1

2
exp(σt) + c.c.

]
.

It is seen that p(r, 0, t)→ 0 as r →∞. We thus have,

Ω(r) = CKm (r̂) (2.37)

Ψ(r) = βr−m +

( C
l2

)
Km (r̂)− CR0

2ml

(
r

R0

)−m
Km+1

(
R̂0

)
(2.38)

P(r) = ρ

{
− νl2βr−m +

νlCR0

2m

(
r

R0

)−m
Km+1

(
R̂0

)}
(2.39)

Equations 2.37-2.39 are to be used subsequently. Expressions 2.1-2.4 in boundary condi-
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tions 1.3-1.5 lead to

(
σa0 +

m

R0
Ψ(R0)

)
1

2
exp(σt) + c.c. = 0, (2.40)(

d2Ψ

dr2
− 1

r

dΨ

dr
+
m2

r2
Ψ

)
r=R0

1

2
exp(σt) + c.c. = 0, (2.41)[

P(R0) + 2µm

(
1

r

dΨ

dr
− 1

r2
Ψ

)
r=R0

− Ta0
R2

0

(
1−m2

)] 1

2
exp(σt) + c.c = 0,

(2.42)

Since the above expressions must hold at all time t, the coefficients must be zero. This
leads to the following homogenous equations.

σa0 +
m

R0
Ψ(R0) = 0 (2.43)(

d2Ψ

dr2
− 1

r

dΨ

dr
+
m2

r2
Ψ

)
r=R0

= 0 (2.44)

P(R0) + 2µm

(
1

r

dΨ

dr
− 1

r2
Ψ

)
r=R0

− Ta0
R2

0

(
1−m2

)
= 0 (2.45)

Substituting expressions for Ψ(r) and P(r) from 2.37-2.39 into equations 2.43-2.45, we
obtain (prime indicates differentiation with respect to the argument)

νl2

R0
a0 +

1

R̂0

(
m

R̂0

Km(R̂0)− 1

2
Km+1(R̂0)

)
C +mR−m−20 β = 0 (2.46)

2m(m+ 1)R−m−20 β +

[(
K′′m −

1

r̂
K′m +

m2

r̂2
Km

)
r̂=R̂0

− m+ 1

R̂0

Km+1(R̂0)

]
C = 0

(2.47)

− T

ρR2
0

(1−m2)a0 − νl2R−m0 β +
νR̂0

2m
Km+1(R̂0) C + 2νm

[
− (m+ 1)R−m−20 β

+
1

R̂0

{
K′m(R̂0)− Km(R̂0)

R̂0

+

(
m+ 1

2m

)
Km+1(R̂0)

}
C
]

= 0 (2.48)

The above set of equations are simplified further. We extensively use the following
identities in subsequent algebra (Abramowitz & Stegun 1965)

K′m(z) = −Km−1(z)− m

z
Km(z), K′m(z) = −Km+1(z) +

m

z
Km(z), (2.49)

−Km−1(z) + Km+1(z) =
2m

z
Km(z), −Km−1(z)− Km+1(z) = 2K′m(z) (2.50)

Consider equation 2.46. The coefficient of C using one of the identities in equation 2.49
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can be re-written as

1

R̂0

(
m

R̂0

Km(R̂0)− 1

2
Km+1(R̂0)

)
=

1

R̂0

(
2mKm(R̂0)− R̂0Km+1(R̂0)

2R̂0

)

=
1

R̂0

(
mKm(R̂0) +mKm(R̂0)− R̂0Km+1(R̂0)

2R̂0

)

=
1

R̂0

(
mKm(R̂0) + R̂0K

′
m(R̂0)

2R̂0

)

= − 1

R̂0

(
R̂0Km−1(R̂0)

2R̂0

)

= −Km−1(R̂0)

2R̂0

(2.51)

Thus equation 2.46 reduces to

νl2

R0
a0 −

Km−1(R̂0)

2R̂0

C +mR−m−20 β = 0 (2.52)

For simplifying equation 2.47, we differentiate the first identity in 2.49 leading to,

K′′m(z) = −K′m−1(z) +
m

z2
Km(z)− m

z
K′m(z). (2.53)

Using 2.53 in the expression below, we obtain

K′′m(r̂)− 1

r̂
K′m(r̂) +

m2

r̂2
Km(r̂) = −K′m−1(r̂)− m+ 1

r̂

(
K′m(r̂)− m

r̂
Km(r̂)

)
= −K′m−1(r̂) +

m+ 1

r̂
Km+1(r̂) (2.54)

where we have used the second identity 2.49 in writing the second step. This can be used
to simplify equation 2.47 to,

2m(m+ 1)R−m−20 β − K′m−1(R̂0)C = 0 (2.55)

Similarly, equation 2.48 can be written as

− T

ρR2
0

(1−m2)a0 − νl2R−m0

(
1 +

2m(m+ 1)

R̂2
0

)
β

+
ν

R̂0

[
R̂2

0

2m
Km+1(R̂0) + 2m

(
K′m(R̂0)− Km(R̂0)

R̂0

)
+ (m+ 1)Km+1(R̂0)

]
C = 0

(2.56)

The coefficient of C equation in 2.56 can be simplified as follows. Using the identities
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written earlier in 2.49

ν

R̂0

[
R̂2

0

2m
Km+1(R̂0) + 2m

(
K′m(R̂0)− Km(R̂0)

R̂0

)
+ (m+ 1)Km+1(R̂0)

]

=
ν

R̂0

[
R̂2

0

2m
Km+1(R̂0) + 2m

(
K′m(R̂0)− Km(R̂0)

R̂0

)
+ (m+ 1)

(
−K′m(R̂0) +

m

R̂0

Km(R̂0)

)]

=
ν

R̂0

[
R̂2

0

2m
Km+1(R̂0)− mKm(R̂0)

R̂0

+m

(
mKm(R̂0)

R̂0

+ K′m(R̂0)

)
− K′m(R̂0)

]

=
ν

R̂0

[
R̂2

0

2m
Km+1(R̂0)− mKm(R̂0)

R̂0

−mKm−1(R̂0)− K′m(R̂0)

]

=
ν

R̂0

[
R̂2

0

2m
Km+1(R̂0)− 1

2

(
−Km−1(R̂0) + Km+1(R̂0)

)
−mKm−1(R̂0)

+
1

2

(
Km−1(R̂0) + Km+1(R̂0)

)]
=

ν

R̂0

[
R̂2

0

2m
Km+1(R̂0)− (m− 1)Km−1(R̂0)

]
(2.57)

Thus equation 2.56 simplifies to

− T

ρR2
0

(1−m2)a0 − νl2R−m0

(
1 +

2m(m+ 1)

R̂2
0

)
β +

ν

R̂0

[
R̂2

0

2m
Km+1(R̂0)

−(m− 1)Km−1(R̂0)

]
C = 0 (2.58)

After these algebraic manipulations we obtain the final forms of equations 2.46-2.48.

νl2

R0
a0 −

Km−1(R̂0)

2R̂0

C +mR−m−20 β = 0 (2.59)

−K′m−1(R̂0) C + 2m(m+ 1)R−m−20 β = 0 (2.60)

− T

ρR2
0

(1−m2)a0 +
ν

R̂0

[
R̂2

0

2m
Km+1(R̂0)− (m− 1)Km−1(R̂0)

]
C

−νl2R−m0

(
1 +

2m(m+ 1)

R̂2
0

)
β = 0 (2.61)

Equations 2.59-2.61 are linear equations in a0, C and β. For a non-trivial solution, the
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determinant of the left hand side must be zero. Thus,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

νl2 −Km−1(R̂0)

2l

m

R0

0 −K′m−1(R̂0)
2m(m+ 1)

R2
0

− T

ρR2
0

(1−m2)
ν

R̂0

G(R̂0) −νl2
(

1 +
2m(m+ 1)

R̂2
0

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

with G(R̂0) ≡ R̂2
0

2m
Km+1(R̂0) − (m − 1)Km−1(R̂0). Note that in the last column of the

determinant, R−m0 has been factored out as it appears in all the three terms. Similarly,
1/R0 has been factored out from the first row. Solving the determinant, we obtain

νl2

[
νl2K′m−1(R̂0)

(
1 +

2m(m+ 1)

R̂2
0

)
− νG(R̂0)

R̂0

2m(m+ 1)

R2
0

]

+
TKm−1(R̂0)

lρR4
0

m(m+ 1)(1−m2)− TK′m−1(R̂0)

ρR3
0

m(1−m2) = 0 (2.62)

Re-arranging equation 2.62 we can write

νl2

[
K′m−1(R̂0)νl2

(
1 +

2m(m+ 1)

R̂2
0

)
− νG(R̂0)

R̂0

2m(m+ 1)

R2
0

]

+
T

ρR2
0

(1−m2)

(
Km−1(R̂0)

R̂0

m(m+ 1)

R0
− K′m−1(R̂0)

m

R0

)
= 0 (2.63)

Dividing equation 2.63 throughout by K′m−1(R̂0) (it is checked that there are no zeroes

of this on the complex plane whose <
(
R̂0

)
> 0), and re-arranging we obtain[

ν2l4

(
1 +

2m(m+ 1)

R̂2
0

)
− 2m(m+ 1)

R2
0K
′
m−1(R̂0)

ν2l2G(R̂0)

R̂0

]

+
T

ρR3
0

m(m2 − 1)

(
1− (m+ 1)Km−1(R̂0)

R̂0K
′
m−1(R̂0)

)
= 0 (2.64)

Equation 2.64 may be re-written as

ν2l4 +
2m(m+ 1)

R̂2
0

(
1− G(R̂0)

R̂0K
′
m−1(R̂0)

)
ν2l4 +

Tm(m2 − 1)

ρR3
0

(
1− (m+ 1)

R̂0

Km−1(R̂0)

K′m−1(R̂0)

)
= 0

(2.65)

Dividing and multiplying equation 2.65 by ν2 and R4
0 respectively, we obtain

R̂4
0 +

{
2m(m+ 1)

(
1− G(R̂0)

R̂0K
′
m−1(R̂0)

)}
R̂2

0 + La m(m2 − 1)

(
1− (m+ 1)

R̂0

Km−1(R̂0)

K′m−1(R̂0)

)
= 0

(2.66)
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2.2. Continuous spectrum

In our analysis in the previous section, we had assumed that <(l) > 0. We now allow
for the possibility that < (l) = 0. Suppose l ≡

√
σ
ν = Iξ where ξ ∈ R+. This implies that

σ is a real negative quantity (σ = −νξ2). In terms of ξ, equations 2.7 and 2.8 may be
written as

d2Ω

dr2
+

1

r

dΩ

dr
+

(
ξ2 − m2

r2

)
Ω = 0, (2.67)

d2Ψ

dr2
+

1

r

dΨ

dr
− m2

r2
Ψ = Ω (2.68)

The solution to equation 2.67 is

Ω(r) = CJm(ξr) +DYm(ξr) (2.69)

where C,D are (real) constants of integration as coefficients of equation 2.67 are real.
Equation 2.68 now becomes

d2Ψ

dr2
+

1

r

dΨ

dr
− m2

r2
Ψ = CJm(ξr) +DYm(ξr) (2.70)

whose solution is (Prosperetti 2011)

Ψ(r) =

α− ∫ r

∞

v2(q)
{
CJm (ξq) +DYm (ξq)

}
W (q)

dq

 v1(r)

+

β +

∫ r

R0

v1(q)
{
CJm (ξq) +DYm(ξq)

}
W (q)

dq

 v2(r) (2.71)

With solution of the homogenous part of equation 2.70, v1(q) = qm, v2(q) = q−m, their
Wronskian W (q) = − 2m

q and α = 0 for boundedness at r →∞, we obtain

Ψ(r) =

[
−C
∫ ∞
r

q−m+1Jm (ξq)

2m
dq −D

∫ ∞
r

q−m+1Ym (ξq)

2m
dq

]
rm

+

[
β − C

∫ r

R0

qm+1Jm (ξq)

2m
dq −D

∫ r

R0

qm+1Ym (ξq)

2m
dq

]
r−m (2.72)

Using the following identities (Abramowitz & Stegun 1965)

d

dz

(
z−mQm(z)

)
= −z−mQm+1(z),

d

dz

(
zm+1Qm+1(z)

)
= zm+1Qm(z) (2.73)
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where Qm = Jm or Ym. We can simplify the integrals in equation 2.72 as follows.

C
2m

∫ ∞
r

q−m+1Jm (ξq) dq =
Cξm−2

2m

∫ ∞
r̂

q̂−m+1Jm (q̂) dq̂, (q̂ ≡ ξq, r̂ ≡ ξr)

=
Cξm−2

2m
r̂−m+1Jm−1(r̂), (m > 1/2)

=
C

2mξ
r−m+1Jm−1(r̂) (2.74)

C
2m

∫ r

R0

qm+1Jm (ξq) dq =
Cξ−m−2

2m

∫ r̂

R̂0

q̂m+1Jm (q̂) dq̂, (R̂0 ≡ ξR0)

=
Cξ−m−2

2m

(
r̂m+1Jm+1(r̂)− R̂m+1

0 Jm+1(R̂0)
)

=
C

2mξ

(
rm+1Jm+1(r̂)−Rm+1

0 Jm+1(R̂0)
)

(2.75)

As Ym satisfies the same identities as Jm, the other two integrals can be handled in
exactly the same way. We obtain now,

Ψ(r) =

[
− C

2mξ
r−m+1Jm−1(r̂)− D

2mξ
r−m+1Ym−1(r̂)

]
rm

+

[
β − C

2mξ

{
rm+1Jm+1(r̂)−Rm+1

0 Jm+1(R̂0)

}

− D
2mξ

{
rm+1Ym+1(r̂)−Rm+1

0 Ym+1(R̂0)

}]
r−m

= βr−m − Cr
2mξ

{
Jm−1(r̂) + Jm+1(r̂)

}
− Dr

2mξ

{
Ym−1(r̂) + Ym+1(r̂)

}

+
CR0

2mξ

(
R0

r

)m
Jm+1(R̂0) +

DR0

2mξ

(
R0

r

)m
Ym+1(R̂0) (2.76)

Using the identity (Abramowitz & Stegun 1965)

Qm−1(z) +Qm+1(z) =
2m

z
Qm(z) (2.77)

where Qm(z) = Jm(z) or Ym(z), we can simplify equation 2.76 to

Ψ(r) = βr−m − 1

ξ2

{
CJm(r̂) +DYm(r̂)

}
+

R0

2mξ

{
CJm+1(R̂0) +DYm+1(R̂0)

}(
R0

r

)m
(2.78)
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For later algebra, we need the following expressions

dΨ

dr
= −mβr−m−1 − 1

ξ

{
C dJm(r̂)

dr̂
+DdYm(r̂)

dr̂

}

− 1

2ξ

{
CJm+1(R̂0) +DYm+1(R̂0)

}(
R0

r

)m+1

(2.79)

d2Ψ

dr2
= m(m+ 1)βr−m−2 −

{
C d

2Jm(r̂)

dr̂2
+Dd

2Ym(r̂)

dr̂2

}

+
m+ 1

2ξR0

{
CJm+1(R̂0) +DYm+1(R̂0)

}(
R0

r

)m+2

(2.80)

An expression for pressure is obtained from the radial momentum equation.

1

ρ

∂p

∂r
=

1

r

∂2ψ

∂θ∂t
− ν

[
1

r3
∂3ψ

∂θ3
+

1

r2
∂2ψ

∂r∂θ
+

1

r

∂3ψ

∂r2∂θ

]
=
m

r
(σΨ− νΩ) cos(mθ) exp(σt). (2.81)

The following expression is obtained

σΨ− νΩ = σβr−m +
σR0

2mξ

{
CJm+1(R̂0) +DYm+1(R̂0)

}(
R0

r

)m
(2.82)

and we have

1

ρ

∂p

∂r
= cos(mθ) exp(σt)

[
mσβ +

σRm+1
0

2ξ

{
CJm+1(R̂0) +DYm+1(R̂0)

}]
r−m−1(2.83)

We thus obtain an expression for pressure by integrating from r to ∞. With p(r, θ, t) =
cos(mθ) exp(σt)P(r) and P (∞) = 0, we obtain

P(r) = −ρ
[
σβr−m +

σR0

2ξm

{
CJm+1(R̂0) +DYm+1(R̂0)

}(
R0

r

)m]
(2.84)

We thus have

η(θ, t) = a0 exp(σt) cos(mθ) (2.85)

ω(r, θ, t) = exp(σt) sin(mθ)Ω(r), (2.86)

ψ(r, θ, t) = exp(σt) sin(mθ)Ψ(r) (2.87)

p(r, θ, t) = exp(σt) cos(mθ)P(r) (2.88)

Note that unlike the discrete spectrum case, σ in the continuous spectrum is real (as
σ = −νξ2) and hence complex conjugation is not required in equations 2.85-2.88. Explicit
boundary conditions have not been imposed so far (except boundedness at r → ∞).
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Substituting equations 2.85-2.88 in 1.3-1.5, we obtain

σa0 +
m

R0
Ψ(R0) = 0 (2.89)(

d2Ψ

dr2
− 1

r

dΨ

dr
+
m2

r2
Ψ

)
r=R0

= 0 (2.90)

P(R0) + 2µm

(
1

r

dΨ

dr
− 1

r2
Ψ

)
r=R0

− T

R2
0

(
1−m2

)
a0 = 0 (2.91)

Equations 2.89-2.91 represent three linear homogenous equations in four unknowns viz.
a0, C,D and β. In terms of these variables, 2.89 is

−νξ2a0 +
1

ξ

{
1

2
Jm+1(R̂0)− m

R̂0

Jm(R̂0)

}
C +

1

ξ

{
1

2
Ym+1(R̂0)− m

R̂0

Ym(R̂0)

}
D +mR−m−10 β = 0

(2.92)

and equation 2.90 is

2m(m+ 1)R−m−20 β −
{
d2Jm
dr̂2

− 1

r̂

dJm
dr̂

+
m2

r̂2
Jm(r̂)

}
r̂=R̂0

C

−
{
d2Ym

dr̂2
− 1

r̂

dYm

dr̂
+
m2

r̂2
Ym(r̂)

}
r̂=R̂0

D +
m+ 1

ξR0

{
CJm+1(r̂) +DYm+1(r̂)

}
r̂=R̂0

= 0 (2.93)

Its can be shown that using identities for Jm and Ym (Abramowitz & Stegun 1965) (see
2.53 and 2.54 for similar algebra) that

d2Qm
dr̂2

− 1

r̂

dQm
dr̂

+
m2

r̂2
Qm(r̂) =

dQm−1
dr̂

+
m+ 1

r̂
Qm+1(r̂) (2.94)

with Qm(z) = Jm(z) or Ym(z). Using this in equation 2.93 we may re-write it as,

2m(m+ 1)R−m−20 β −
(
dJm−1
dr̂

)
r̂=R̂0

C −
(
dYm−1

dr̂

)
r̂=R̂0

D = 0. (2.95)

Equation 2.95 may be re-written as(
dJm−1
dr̂

)
r̂=R̂0

C +

(
dYm−1

dr̂

)
r̂=R̂0

D − 2m(m+ 1)R−m−20 β = 0 (2.96)

Writing equation 2.91 as,

ρ

[
νξ2βR−m0 +

νR̂0

2m

{
CJm+1(R̂0) +DYm+1(R̂0)

}]

+ 2µm

[
−mβR−m−20 − C

R̂0

(
dJm(r̂)

dr̂

)
r̂=R̂0

− D
R̂0

(
dYm(r̂)

dr̂

)
r̂=R̂0

− C
2R̂0

Jm+1(R̂0)

− D
2R̂0

Ym+1(R̂0)− βR−m−20 +
1

R̂2
0

{
CJm(r̂) +DYm(r̂)

}
r̂=R̂0

− 1

2mR̂0

{
CJm+1(R̂0) +DYm+1(R̂0)

}]
− T

R2
0

(
1−m2

)
a0 = 0 (2.97)
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Equation 2.97 may be further simplified to

−T
(
1−m2

)
ρR2

0

a0 + νξ2R−m0

(
1− 2m (m+ 1)

R̂2
0

)
β

+
ν

R̂0

[
R̂2

0

2m
Jm+1 − 2m

(
J
′

m(R̂0)− Jm(R̂0)

R̂0

)
− (m+ 1) Jm+1(R̂0)

]
C

+
ν

R̂0

[
R̂2

0

2m
Ym+1 − 2m

(
Y

′

m(R̂0)− Ym(R̂0)

R̂0

)
− (m+ 1) Ym+1(R̂0)

]
D = 0 (2.98)

Using the same set of steps as equation 2.57 and identities for Jm and Ym (Abramowitz
& Stegun 1965), the coefficient of C and D may be simplified in 2.98 to obtain,

−T
(
1−m2

)
ρR2

0

a0 + νξ2R−m0

(
1− 2m (m+ 1)

R̂2
0

)
β

+
ν

R̂0

[
R̂2

0

2m
Jm+1

(
R̂0

)
− (m− 1) Jm−1

(
R̂0

)]
C +

ν

R̂0

[
R̂2

0

2m
Ym+1

(
R̂0

)
− (m− 1) Ym−1

(
R̂0

)]
D

= 0 (2.99)

We write the final form for the three boundary conditions in equations 2.89,2.90 and 2.91
together below. As these are three equations in four unknowns, we can determine three
ratios which we choose to be a0/β, C/β and D/β.

−νξ2 a0
β

+
1

ξ

{
1

2
Jm+1(R̂0)− m

R̂0

Jm(R̂0)

}
C
β

+
1

ξ

{
1

2
Ym+1(R̂0)− m

R̂0

Ym(R̂0)

}
D
β

= −mR−m−10

(2.100)(
dJm−1
dr̂

)
r̂=R̂0

C
β

+

(
dYm−1

dr̂

)
r̂=R̂0

D
β

= 2m(m+ 1)R−m−20 (2.101)

−T
(
1−m2

)
ρR2

0

a0
β

+
ν

R̂0

[
R̂2

0

2m
Jm+1

(
R̂0

)
− (m− 1) Jm−1

(
R̂0

)] C
β

+
ν

R̂0

[
R̂2

0

2m
Ym+1

(
R̂0

)
− (m− 1) Ym−1

(
R̂0

)] D
β

= −νξ2R−m0

(
1− 2m (m+ 1)

R̂2
0

)
(2.102)

Equations 2.100, 2.101 and 2.102 are three inhomogenous equations. For obtaining a
non-trivial solution, the determinant of the coefficients of the left hand side should not
be zero. It is clear that there is no dispersion relation in the present case and a non-trivial
value of a0/β, C/β, D/β is obtained for every value of 0 < ξ <∞ by solving equations
2.100-2.102. Note that since σ = −νξ2, this implies that −∞ < σ < 0 for the continuous
spectrum.
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3. Initial value problem (IVP)

For studying the IVP, we set

η(θ, t) = a(t) cos(mθ), (3.1)

ω(r, θ, t) = sin(mθ)Ω(r, t), (3.2)

ψ(r, θ, t) = sin(mθ)Ψ(r, t) (3.3)

p(r, θ, t) = cos(mθ)P(r, t) (3.4)

In order to avoid profusion of symbols in the algebra, we have retained the same symbols
for the radial part of the ω, ψ and p as in earlier sections. Substituting expressions 3.1-3.4
in equation 1.1 and 1.2, we obtain

∂Ω

∂t
= ν

[
∂2Ω

∂r2
+

1

r

∂Ω

∂r
− m2

r2
Ω

]
(3.5)

∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
− m2

r2
Ψ = Ω (3.6)

Define the Laplace transform and inverse transform pair f(t) and f̃(s) as,

f̃(s) ≡
∫ ∞
0

f(t) exp(−st)dt (3.7)

With initial conditions a(0) = a0,
.
a(0) = 0, Ω(r, 0) = 0, the Laplace transform of

equations 3.5 and 3.6 is (Laplace transformed variables are indicated with a tilde on top)

∂2Ω̃

∂r2
+

1

r

∂Ω̃

∂r
−
(
s

ν
+
m2

r2

)
Ω̃ = 0,

∂2Ψ̃

∂r2
+

1

r

∂Ψ̃

∂r
− m2

r2
Ψ̃ = Ω̃(r, s) (3.8)

The algebra henceforth is entirely similar to the discrete spectrum algebra except that
now equations 3.8 are partial differential equations. The solution to the first of equations
3.8 is

Ω̃(r, s) = C̃(s)Km (hr) + D̃(s)Im (hr) (3.9)

where h ≡
√

s
ν and C̃(s), D̃(s) are complex functions of s, h ≡

√
s
ν and Im,Km are mth

order modified Bessel functions of the first and second kind respectively. For preventing
divergence of Ω̃(r, s) as r →∞, we set D̃(s) = 0. We thus have Ω̃(r, s) = C̃(s)Km (hr).

∂2Ψ̃

∂r2
+

1

r

∂Ψ̃

∂r
− m2

r2
Ψ̃ = C̃(s)Km (hr) , <(h) > 0 (3.10)
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Similar to the discrete spectrum case, we obtain

Ω̃(r, s) = C̃(s)Km (hr) (3.11)

Ψ̃(r, s) = β̃(s)r−m +

(
C̃(s)
h2

)
Km (hr)− C̃(s)R0

2mh

(
r

R0

)−m
Km+1 (hR0) (3.12)

dΨ̃

dr
= −mβ̃(s)r−m−1 +

(
C̃(s)
h

)
K′m(hr) +

C̃(s)
2h

(
r

R0

)−m−1
Km+1 (hR0) (3.13)

d2Ψ̃

dr2
= m(m+ 1)β̃(s)r−m−2 + C̃(s)K′′m(hr)− C̃(s)

2h

m+ 1

R0

(
r

R0

)−m−2
Km+1 (hR0)

(3.14)

P̃(r, s) = ρ

{
− sβ̃(s)r−m +

sC̃(s)R0

2mh

(
r

R0

)−m
Km+1 (hR0)

}
(3.15)

Laplace transforming the boundary conditions 1.3-1.5 and using 3.1-3.4, we obtain

sã(s) +
m

R0
Ψ̃(R0, s) = a0 (3.16)(

∂2Ψ̃

∂r2
− 1

r

∂Ψ̃

∂r
+
m2

r2
Ψ̃

)
r=R0

= 0 (3.17)

P̃(R0, s) + 2µm

(
1

r

∂Ψ̃

∂r
− 1

r2
Ψ̃

)
r=R0

− T

R2
0

(
1−m2

)
ã(s) = 0 (3.18)

Substituting expressions for Ψ̃(r, s) and its derivatives alongwith P̃(r, s) from 3.12-3.15
into equations 3.16-3.18 and following the same algebra as in the discrete spectrum, we
obtain

s

R0
ã(s)− Km−1(hR0)

2hR0
C̃(s) +mR−m−20 β̃(s) =

a0
R0

(3.19)

−K′m−1(hR0) C̃(s) + 2m(m+ 1)R−m−20 β̃(s) = 0 (3.20)

− T

ρR2
0

(1−m2)ã(s) +
ν

hR0

[
h2R2

0

2m
Km+1(hR0)− (m− 1)Km−1(hR0)

]
C̃(s)

−sR−m0

(
1 +

2m(m+ 1)

h2R2
0

)
β̃(s) = 0 (3.21)
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Equations 3.19-3.21 are linear equations in ã(s), β̃(s) and C̃(s). To solve for ã(s), using
Cramer’s rule we obtain,

ã(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 −Km−1(hR0)

2h

m

R0

0 −K′m−1(hR0)
2m(m+ 1)

R2
0

0
ν

hR0
G(hR0) −s

(
1 +

2m(m+ 1)

h2R2
0

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s −Km−1(hR0)

2h

m

R0

0 −K′m−1(hR0)
2m(m+ 1)

R2
0

− T

ρR2
0

(1−m2)
ν

hR0
G(hR0) −s

(
1 +

2m(m+ 1)

h2R2
0

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where G(hR0) ≡ h2R2

0Km+1 (hR0)

2m
−(m−1)Km−1(hR0). Note that the homogenous part

of equations 3.19-3.21 is identical to what was obtained earlier (see determinant above
equation 2.62), if one replaces s with σ and h with l. The expression for ã(s) may be
simplified as follows,

ã(s) =

[
sK′m−1(hR0)

(
1 +

2m(m+ 1)

h2R2
0

)
− 2νm(m+ 1)

hR3
0

G(hR0)

]
1

K′m−1(hR0)

s2 +
2νm(m+ 1)

R2
0

(
1− G(hR0)

hR0K
′
m−1(hR0)

)
s+

Tm(m2 − 1)

ρR3
0

(
1− (m+ 1)

hR0

Km−1(hR0)

K′m−1(hR0)

)a0

=

[
s

(
1 +

2m(m+ 1)

h2R2
0

)
− 2νm(m+ 1)

hR3
0

G(hR0)

K′m−1(hR0)

]
s2 +

2νm(m+ 1)

R2
0

(
1− G(hR0)

hR0K
′
m−1(hR0)

)
s+

Tm(m2 − 1)

ρR3
0

(
1− (m+ 1)

hR0

Km−1(hR0)

K′m−1(hR0)

)a0

=

[
s+

2mν(m+ 1)

R2
0

− 2νm(m+ 1)

hR3
0

G(hR0)

K′m−1(hR0)

]
s2 +

2νm(m+ 1)

R2
0

(
1− G(hR0)

hR0K
′
m−1(hR0)

)
s+

Tm(m2 − 1)

ρR3
0

(
1− (m+ 1)

hR0

Km−1(hR0)

K′m−1(hR0)

)a0

=

[
s+

2mν(m+ 1)

R2
0

(
1− G(hR0)

hR0K
′
m−1(hR0)

)]
s2 +

2νm(m+ 1)

R2
0

(
1− G(hR0)

hR0K
′
m−1(hR0)

)
s+

Tm(m2 − 1)

ρR3
0

(
1− (m+ 1)

hR0

Km−1(hR0)

K′m−1(hR0)

)a0
(3.22)

The final expression for ã(s) may be written in compact form as,

ã(s) =

[
s+M(s)

s2 + sM(s) + w2
0χ(s)

]
a0 (3.23)
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with

M(s) ≡ 2νm(m+ 1)

R2
0

(
1− G(hR0)

hR0K
′
m−1(hR0)

)
, χ(s) ≡ 1− (m+ 1)

hR0

Km−1(hR0)

K′m−1(hR0)

and w2
0 ≡

Tm(m2 − 1)

ρR3
0

.

Note that ω0 is the inviscid frequency of oscillation of a Fourier mode of index m.

4. Test cases

4.1. Lid driven cavity

Lid driven cavity is the classic test case for one phase Navier-Stokes equations in
CFD. Here we have a square cavity of side length unity with no slip and no-penetration
conditions on three boundaries. except the lid which moves with constant velocity. We
benchmark our solver against the data of Ghia et al. (1982)

(a) Simulation geometry for square cavity

(b) u velocity along y = 0.5 (c) v velocity along x = 0.5

Figure 1: Reynolds no. Re=1000
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4.2. Dam break test (Cartesian), Experimental Verification

In this section, we validate our in-house developed solver against experimental data
for the dam-break test. A rectangular two dimensional column of fluid is initialised with
zero velocity and spreads under the influence of gravity.

(i) Domain: [0, 1.61]× [0, 0.805] m
(ii) Initial Interface: Dam of height 0.3 m and length 1.0 m
(iii) Grid size: 128× 256
(iv) ρg = 1.226 kg/m3, ρl = 997.0 m3,
(v) µg = 1.78× 10−5, µl = 8.8733× 10−4

(vi) σlg = 0.0728 N/m
(vii) g = 9.81 m/s2

(viii) Boundary Condition : no slip at all boundaries.

0 0.5 1 1.5
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0.4

0.6

0.8

(a)

0 0.5 1 1.5
0
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0.4

0.6

0.8

(b)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

(c)

0 0.5 1 1.5
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0.2

0.4
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(d)

0 0.5 1 1.5
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(e)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

(f)

Figure 2: Verification of in-house code (solid line) and with experimental data (symbols)
obtained from Lobovskỳ et al. (2014)
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4.3. Free oscillations at the interface between two fluids

In order to benchmark the inhouse viscous solver, we simulate free capillary oscillations
of two immiscible, incompressible viscous fluids of density and viscosity ρu, µu, ρl, µl
(subscript u for upper and l for lower) on horizontally and vertically unbounded domain.
The interface is initiated in the form of a single Fourier mode with zero velocity
everywhere and the subsequent motion of the interface is tracked in time at a particular
x location. We use symmetry boundary conditions on all four sides of the computational
domain taken to be [0, 1] × [0, 3]. In the linearised limit, the analytical expression for
amplitude of the standing wave (in the Laplace domain) is given by Prosperetti (1981).

ã(s) =

(
s+ Λ(s)

s2 + Λ(s)s+ ω2
0

)
a0 (4.1)

where,

Λ(s) =
4k(−ρlρus+ k(µu − µl)(ρu(k − λl)− ρl(k − λu)) + k2(µl − µu)2(k − λl)(k − λu)s−1)

(ρl + ρu)(ρl(k − λu) + ρu(k − λl))
,

λl,u ≡
√
k2 +

s

νl,u
and ω2

0 =
Tk3

ρl + ρu
.

For these simulations, we have chosen ρl = 1, ρu = 0.01, µl = 0.01, µu = 0.0001, T = 1, k = 2π

with zero gravity. The simulation geometry is shown in figure 3a. Results from DNS conducted

using our inhouse solver, the numerical Laplace inversion of expression 4.1 and the open-source

solver Basilisk (Popinet 2014) is shown in figure 3b.

(a) Simulation geometry: Grid - 64× 192

0 10 20 30 40

τ = tω0

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

a(τ)
a(0)

Basilisk

Prosperetti(1981)

in-house code

(b) Amplitude vs time

Figure 3: Planar wave viscous oscillations

4.4. Inviscid capillary oscillations

The simulation geometry is the same as that studied in the main manuscript with
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(a) Case 0 in table 2 of the main manuscript

Figure 4: Benchmarking of the inhouse developed DNS code with frequency predicted by
equation 4.2

ω2
0 =

T

R3
0

[
m(m2 − 1)

ρI + ρO

]
. (4.2)

5. Extraction of vorticity data from DNS

Our in-house solver is written in two dimensional Cartesian coordinates (x-y) while the
analytical expressions for Ω̂(r, t) have been obtained using plane-polar (r-θ) coordinates.
We show here that the out-of-plane z component of the vorticity ωCartesian

z ≡ ∂v
∂x − ∂u

∂y

as obtained from DNS, is the same as the (axial) z component of vorticity in cylindrical
coordinates (or polar coordinates) (ω ≡ 1

r{ ∂∂r (ruθ) − ∂ur

∂θ }). We have the following
relations between plane polar coordinates (r, θ) and Cartesian coordinates ((x, y))

x = r cos(θ), y = r sin (θ) (5.1)

r =
(
x2 + y2

)1/2
, θ = tan−1

(y
x

)
(5.2)

And the relations between velocity components in Cartesian (u, v) and polar components
(ur, uθ)

u = ur cos(θ)− uθ sin (θ) (5.3)

v = uθ cos(θ) + ur sin (θ) (5.4)

The partial derivatives have the following relation

∂

∂x
= cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ
(5.5)

∂

∂y
= sin(θ)

∂

∂r
+

cos(θ)

r

∂

∂θ
(5.6)
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Substituting expressions 5.5 and 5.6 into,

ωCartesian
z =

∂v

∂x
− ∂u

∂y

=

{
cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ

}
[uθ cos(θ) + ur sin (θ)]

−
{

sin(θ)
∂

∂r
+

cos(θ)

r

∂

∂θ

}
[ur cos(θ)− uθ sin (θ)] (5.7)

After some algebra on 5.7, we can show that

ωCartesian
z =

1

r

{
∂

∂r
(ruθ)−

∂ur
∂θ

}
= ω (5.8)

6. List of symbols

For the benefit of the reader, we provide here a list of symbols which are used in the
main manuscript in the nomnclature below.

7. Appendix

The series representation of Km(z) for m = 0, 1, 2 and 3 are obtained below from
Mathematica (Wolfram Research, Inc. 2017) or eqn. 4.16 in the main manuscript. For
m > 0, it is seen that z = 0 is a pole and a logarithmic branch point.

K0(z) = −
[
γ + ln

(z
2

)]
+ . . .

K1(z) =
1

z
+

1

4

[
2 ln

(z
2

)
− 1 + 2γ

]
z + . . . (7.1)

K2(z) =
2

z2
− 1

2
+

1

32

[
3− 4γ − 4 ln

(z
2

)]
z2 + . . . (7.2)

K3(z) =
8

z3
− 1

z
+
z

8
+

1

576

[
−11 + 12γ + 12 ln

(z
2

)]
z3 + . . . (7.3)

Nomenclature

η Location of perturbed interface
ẑ Axial coordinate
Im mth order modified Bessel function

of the first kind
Jm mth order Bessel function of the

first kind
Km mth order modified Bessel function

of the second kind
µI The viscosity of inner fluid
µO The viscosity of outer fluid
Ym mth order Bessel function of the

second kind
Ω Radial part of perturbation vortic-

ity ω
ω Axial component of perturbation

vorticity
ω0 Inviscid frequency

P Radial part of perturbation pres-
sure p

Ψ Radial part of perturbation
streamfunction ψ

ψ Axial component of perturbation
streamfunction

ρI The density of inner fluid
ρO The density of outer fluid
σ Complex frequency
θ Azimuthal coordinate
σtot Stress tensor
k Axial wavenumber
m Azimuthal wavenumber
p Perturbation pressure
r Radial coordinate
R0 Radius of cylindrical filament
s Laplace variable
T Surface tension coefficient
La Laplace number La
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