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S-1. Growing and decaying spherical harmonics

The different growing and decaying harmonics appearing in the general expression of the hy-

drodynamic field variables can be expressed as

pn = λrn
n∑

m=0

[
An,m cos(mφ) + Ân,m sin(mφ)

]
Pn,m(η)

Φn = rn
n∑

m=0

[
Bn,m cos(mφ) + B̂n,m sin(mφ)

]
Pn,m(η)

χn = rn
n∑

m=0

[
Cn,m cos(mφ) + Ĉn,m sin(mφ)

]
Pn,m(η)


(S-1)

p−n−1 = r−n−1

n∑
m=0

[
A−n−1,m cos(mφ) + Â−n−1,m sin(mφ)

]
Pn,m(η)

Φ−n−1 = r−n−1

n∑
m=0

[
B−n−1,m cos(mφ) + B̂−n−1,m sin(mφ)

]
Pn,m(η)

χ−n−1 = r−n−1

n∑
m=0

[
C−n−1,m cos(mφ) + Ĉ−n−1,m sin(mφ)

]
Pn,m(η)


, (S-2)

where Pn,m(η) stands for the associated Legendre polynomial of degree n and order m with an

argument, η = cos(θ); An, Bn, Cn, A−n−1, B−n−1, C−n−1, Ân, B̂n, Ĉn, Â−n−1, B̂−n−1 and Ĉ−n−1

∗Email: aditya@mech.iitkgp.ernet.in
†Email: suman@mech.iitkgp.ernet.in

1



are the arbitrary constant to be determined by solving the surfactant transport equation and

the hydrodynamic boundary conditions at the drop-matrix interface.

S-2. Comparison with previous works

In different steps of calculation, the expressions of important physical variables have been

validated against various limiting cases of the present physical situation, as elaborated below:

(i) Surfactant-free drop in shear flow:

This simplistic case can be obtained in the present study by substituting M = 0 and β = 0

in the resulting expressions. Under such a condition the leading order effective shear viscosity

was first obtained by Taylor (1932). Our leading order results in equation (14) of the main

manuscript, i.e. η
(0)
h,clean = 1 + ν

(5λ+ 2)

(2λ+ 2)
, corroborates with that classic result.

In the same limit, we obtained the O(Ca) normal stress differences as given below:

N
(Ca)
1 = ν

(16 + 19λ)2

40 (λ+ 1)2 (S-3a)

and

N
(Ca)
2 = −ν 551λ3 + 1623λ2 + 1926λ+ 800

280 (λ+ 1)3 . (S-3b)

Also in O(Ca), the hydrodynamic contribution to the effective shear viscosity is obtained as

zero (η
(Ca)
eff = 0). These observations are in agreement with the seminal work of Schowalter et al.

(1968). For similar conditions, the O(Ca) shape function f (Ca) matches with the expressions

obtained by Barths-Biesel & Acrivos (1973) and Vlahovska (2011), respectively.

(ii) Surfactant-coated drop in shear flow:

The expressions in the vanishing diffusion regime or the high surface Péclet number regime

(PeS � 1) (Vlahovska et al., 2009) can be obtained by taking a limit k →∞ and substituting

M = 0 in the present expressions, as shown below:

N
(Ca)
1 =

5 ν (3β + 1)

2β
(S-4a)

and

N
(Ca)
2 = −5 ν (6 β + 7)

28 β
. (S-4b)

In the diffusion dominated limit (i.e. PeS � 1) if we substitute M = 0 in the presently

obtained surfactant concentration Γ = Γ(0) +CaΓ(Ca) and O(Ca) drop shape correction f (Ca),

they become similar to those obtained by Mandal et al. (2017). In all these our calculations

consistently capture the result of N2 < 0 in the absence of electrical effects. This is commonly

observed in polymeric solutions and has been reported by earlier studies Li & Pozrikidis (1997).

(iii) Uncontaminated drop in combined shear flow and electric field:

In the limit β → 0 the surface tension becomes uniform along the drop surface. For that

situation, the present results e.g. the drop deformation, effective shear viscosity and normal
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stress differences in various orders of perturbation, match exactly with those of Mandal &

Chakraborty (2017). When the electric field is applied along the direction of velocity gradient

Φt = π/2, we find that in equation (14) of main manuscript, the clean drop effective viscosity

due to electric field (η
(0)
e,clean) vanishes. A similar observation was also made in another reported

work (Vlahovska, 2011). The electric field contribution, to the normal stress differences in the

leading order (equation (15) of the main manuscript), are also in agreement with them.

Hence we obtained a reasonable confidence on the correctness of the theoretical analysis

presented in this work.

S-3. Effect of β and k on surface concentration and surface tension

Here in figure S-1, we explore the role of the surfactant characterization parameters, namely the

elasticity number β and physicochemical constant k, in altering the surfactant concentration

and surface tension variation on the drop surface.

(a) (b)

(c) (d)

Figure S-1: Variation of surfactant concentration
(
Γ = Γ(0) + CaΓ(Ca)

)
and interfacial tension(

γ = γ(0) + Caγ(Ca)
)

in the x− y plane for different values of the parameters β and k. In sub-

figures (a) and (b), k = 1 is chosen while β = 0.8 is taken for (c) and (d). Here the tilt angle of

the electric field is Φt = π/4 , Mason number M = 2 and other parameters are as per system-C.
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S-4. Effect of Mason number on surface tension

In figure S-2 we delineate the effects of strength of electrical stresses relative to the hydrody-

namic stresses, by varying the Mason number, define as M =
εcẼ

2
∞

µcG̃
.

Figure S-2: Interfacial tension variation (γ) in the x − y plane for different Mason number

(M). Here β = 0.8, k = 1 and Φt = π/2. Other parameters are chosen following system-A.

S-5. Interplay between charge convection and surfactant transport

In figure S-3(a), we demonstrate the variations in the surface charge distribution (qS = q
(0)
S +

ReE q
(ReE)
S ) for different values of the surface elasticity parameter β. It is observed that for

a surfactant-contaminated drop, the redistribution of charges due to the presence of finite

charge convection at the interface is affected by the Marangoni effects. On the other hand, the

modulations in the electrohydrodynamic flow, created by the finite charge convection, interplay

with the Marangoni convection. This behavior is depicted in figure S-3(b).
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(a) (b)

Figure S-3: (a) Azimuthal variation of the surface charge density (qS = q
(0)
S + ReE q

(ReE)
S )

for different values of the surface elasticity parameter, β. (b) variation of the surface tension

(γ = γ(0)+Caγ(Ca)+CaReE γ
(ReE)) for different values of electric Reynolds number (ReE). The

demonstrations are for system-C. Parameters are chosen as ReE = 0.2,M = 2, k = 1,Φt = π/4

and Ca = 0.2.

S-6. Variation of interfacial velocity and electrical traction

Here we exemplify the coupled consequence of charge convection and Marangoni stress on the

flow field by showing the variation in the azimuthal components the drop velocity and electrical

traction at the interface in figures S-4.

(a) (b)

Figure S-4: Variation of O(ReE) correction to the surface velocity component, ReE u
(ReE)
S,φ

and electrical traction component at the drop surface, [[Tφ]](ReE) = T
E(ReE)
φ

∣∣
c
− TE(ReE)

φ

∣∣
d

for

different surface elasticity parameter, β. Here the demonstration os for system-C, while rest of

the parameters are M = 2, ReE = 0.2,Φt = π/4 and k = 1.

S-7. Surfactant effect on electrohydrodynamic drop deformation

In order to quantify the deformation behaviour of the drop we define a deformation parame-

ter in the plane of shear as follows, D =
max(r

S
(θ = π/2, φ))−min(r

S
(θ = π/2, φ))

max(r
S
(θ = π/2, φ)) + min(r

S
(θ = π/2, φ))

. Another
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important quantification of the drop deformation is the drop inclination angle which can be

defined in the x−y plane as the angle φ corresponding to the maximum value of r
S

for θ = π/2

and is given as ϕd = 1
2

tan−1(L̂2,2/L2,2). In comparison to the case when only a simple shear

flow is present (Li & Pozrikidis, 1997), the electrical effects (with Φt = π/4,M = 2) increases

the deformation parameter (D) for system-B. In contrast, for system-C the initial prolate shape

(with respect to the applied electric field direction along Φt = π/4) of the drop under simple

shear flow becomes a complete oblate one when electrical effects are present. This phenomenon

is portrayed in the insets of the figures S-5(a) and (b)). In this section (figure S-5) we describe

the drop shapes for different electrohydrodynamic systems. Also the variation of deformation

parameter D with the surface elasticity number β is shown.

(a) System-B (b) System-C

Figure S-5: Effect of non-uniform surfactant distribution on the drop shape deformation in

the plane of shear for systems B and C, respectively. The other parameters are M = 2, Ca =

0.2, Φt = π/4.
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