
Supplementary information

Accuracy of explicit Euler method used to track temporal
evolution of the drop

For an equation, ẏ = λy, where λ is a complex parameter, the exact solution
is y(t) = y0e

λt stable if Re(λ) < 0. Numerically, the solution is bounded and
stable if |1 + hλ| ≤ 1. However the numerical solution need not be stable for it
to be accurate locally. In our analysis, the equation is dx

dt = u
xx the coefficient

“λ” = u
x varies for each iteration with change in local velocity and and therefore

the comparison of our numerical solution with analytical exact result has to be
done locally. Sample plots (for an arbitrary time t = 0.249) is shown comparing
analytical exact solution with numerically obtained plot at specific node points
‘20’ and ‘40’ (figures 1 and 2 ). The initial conditions are ε = 1.85, Ca = 0.15.
Time step size and number of node points are, δt = 0.00001 and nd=150.

The following analyses will also show that the code is accurately optimized
for both the number of node points and time step size.

Code optimization

A paramenter, normal electric field strength (En) is chosen to both check con-
vergence of the code as well as to optimize number of node points and time
step size δt. A test case is assumed with ε = 1.85, to simulate the shape of the
bridged drops, and En at the pole is plotted, one iteration before simulation ends
(when singularity is reached) for 50 elements for varying δt for Ca = 0.125. The
results are plotted in figure 3. The value of En becomes fairly constant when δt
is taken as 10−3. To make sure no inadvertant error creeps in, our simulations
were carried out for δt = 10−5.
Similar analysis is carried out to optimize number of node points. Again, En

at the pole is plotted for varying number of node points for Ca = 0.153. δt is
taken as 10−4. Figure 4 shows that for number of nodes = 150 and above the
value of En at the pole remains constant. As the increase in the number of ele-
ments does not improve much in the accuracy of the results but it significantly
increases the computational time, we chose to carry out the numerical analysis
with 150 elements.
The change in internal volume was also computed for all our simulations and it

was noted that the value always remained below 0.1%. The figure 5 shows a test
case for change in volume and change in area for 150 elements and δt = 10−5.
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Figure 1: Comparison of analytical exact solution with numerical results of the
temporal evolution of the droplet (Ca = 0.15) at 20th node point).
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Figure 2: Comparison of analytical exact solution with numerical results of the
temporal evolution of the droplet (Ca = 0.15) at 40th node point).
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Figure 3: En at the pole for varying δt, with 50 elements for Ca = 0.125
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Figure 4: En at the pole for varying number of node points, for Ca = 0.153, for
δt = 10−4
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Figure 5: Volume and area with time, for Ca = 0.153, and δt = 10−5
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