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In this supplementary material, we provide a detailed derivation of Navier-Stokes equation in
inertial frame of reference, and provide an explanation for neglect of temporal changes in the problem.
Next, we provide the details of derivation of second reflection of the velocity field (’Déo)). Furthermore,
we illustrate the procedure to ease the computation of lift force integral (see (4.12) of the main text).
This is done by (i) using transformations to reduce the number of integrals involved in reflected

velocity components, and (ii) using orthogonal relations to overcome apparent divergence during the

evaluation of volume integral.

I. MOMENTUM EQUATION IN AN INERTIAL FRAME OF REFERENCE

In a fixed frame of reference, the equation governing the momentum is:

/ 8l7/ v oIy IS5 7! </ D/
Ao + 0 VU | =p V0 - VP (S1)

The symbol denotes the variables in a fixed frame of reference and ’ denotes the dimensional variables.
For clarity we drop the prime (') notation.

We now shift the frame of reference to the particle center. Since we are analyzing the migration
in the weak inertial regime, the particle is assumed to move (translate or migrate) with a constant
velocity Us. A similar assumption has been made by Becker et al., (1996, p. 209), Magnaudet et al.,
(2003, p. 119), and Ho and Leal (1974) in the context of weak inertia. The assumption of constant
migration velocity might breakdown if the particle is very near the wall (i.e. particle —wall distance
to particle size ratio is d/a ~ O(1)) (see Magnaudet et al., 2003 pg. 147). Since we address the
d/a < 1 regime, we assume the migration velocity to be steady and therefore analyze the problem in

an inertial frame of reference. Since time is a Galilean invariant in this frame, we write:
t=1 (S2)
The shift in coordinate system is governed by the following invertible relation:
E=E—1U, & €£=¢+1U,. (S3)
The velocity field in the moving frame of reference is related to that in the fixed frame as:
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Here, S represents the coordinates in a fixed reference frame (i.e. & = Z, E
&

7, & = %), and &
v, &

represents the coordinates in the reference frame of the moving particle (i.e =y, & = 2).

Taking partial derivative of (S4) in &; = x direction:
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We conclude that the partial derivative in all the spatial directions are unchanged (i.e. VU = VU ).

Performing a partial differentiation in time on (S4), we obtain:
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Using (S2), (S3) and (S5) in the above equation, we find:
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The above relation can be represented as:
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Substituting (S8) and (S4) in (S1) and restoring the dimensional notation ’, we write:
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Simplifying the above relation, we obtain the dimensional momentum equation in the inertial frame

of reference:
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We represent the system in non-dimensional variables using a', KU}, ..., ' kU, ../a" as the charac-
teristic scales of length, velocity and pressure respectively. We find that the hydrodynamics of the

current problem has three time scales: (i) viscous time scale (.. ~ a/?/v/), (ii) convective time scale

of the flow (¢ ~a'/

conw Since

~ a'/KkU,,,,) and (iii) migration (or geometric) time scale (¢, Upig)-

the time dependence enters the system through the migration time scale, we choose a’ /U, mig @ the

characteristic time scale. The momentum equation (S10) is represented in dimensionless form as:
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On comparing the coefficients multiplying the temporal and convective terms, we find that the tem-
poral variations can be assumed to be negligible if the migration time scale is much larger than the

convective time scale (or U/ . g < kU ...). For problems involving lateral migration in the presence

max

of weak inertia, a similar assumptlon has been made by: Becker et al., (1996, p. 209); Hogg (1994,
p. 295); Magnaudet et al., (2003, p. 119), (Ho and Leal, 1974). The flow is therefore governed by



continuity and quasi-steady Navier-Stokes equation (the term quasi-steady implies that the variables

depend only on the instantaneous geometric configuration, provided Uy,;, < &Ujyq,):
V-U=0 Re,(U-VU)=puvV?U—VP (S12)
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Here, Re, is the particle Reynolds number: The above equation is used to model the

hydrodynamics in our analysis.

II. SOLUTION TO %"

Here, we provide the details of the evaluation of 'véo) (see §3.2 in the main text). The solution

is determined by the form of non-homogeneity in the boundary condition at the walls (see (3.12)).
Following the procedure described in §3.1, the non-homogeneities (HaZ,, V1)1, HaZ,,Viand Ugo)) are

represented into the outer scale coordinates before applying Faxén’s integral transformation. s is al-

ready defined in the integral form (see (3.6)), whereas 1); and vgo) have been defined in the particle scale

((3.4) and (3.14), respectively). Upon performing Faxén transformation of the non-homogeneities, we

(0)

find that Vi), has a different integral form in comparison to v, and V1. Therefore, we use super-
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(c.f. boundary condition in (3.12)):

position and seek f)go) as v . These components satisfy the following boundary conditions

f)éo(i) = HaZ,kV (11) — f?%o) at the walls, (S13)

{Jéo()ii) - HaZ’w’iﬁ(Qﬂ;) at the walls. (S14)

Solution to ¥y (;): In view of the particle boundary condition in (S13), 1 (3.4) and Ugo) (3.14) are
represented in the outer coordinates (7721 and ﬁ§0)) and then Faxén transformation is applied. ¢ has
already been represented in outer coordinates and transformed into integral form (see (A8)); vio) is
represented into outer coordinates and then Faxén’s transformation is applied. Various terms present

in the expression for v§0) (such as: 1/r, z2/r3,--- in (3.14)) are transformed into Faxén’s integral

form. Upon deriving each term, we obtain the RHS of wall boundary condition (S13) as:
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Here the terms ¢1, {5, and {3 are given by:
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Following the procedure carried out in §3.1, we assume the form of 'vé ()) = {ﬂg)()), v
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Here, the terms /4, fl5,---f9 are functions of the Fourier variable A\ and coefficients
(A1, Bi, Cy and D) defined in (3.15). The terms 44, {5,--- {9 in the above equations can be ex-
pressed in terms of the known ¢, ¢5, and ¢3. Towards this, we form a system of six equations by
substituting (S15) into RHS of (S13). The LHS of (S13) is represented by (S17)-(S19). Since the

integrals on both the sides are identical, we obtain the following linear system of equations:
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Here, {15, £3p and £14, 3¢ correspond to the boundary condition at the bottom wall Z/|Z| < 0 and the top wall
Z/|Z| > 0, respectively.

Solution to v, () % Upon substituting ¢, in (S14), we obtain @
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Combining (S17)-(S19) and (S21)-(S23), we obtain (3.17)-(3.19).

III. REDUCTION OF NESTED INTEGRALS

Here, we show the procedure for reducing the number of nested integrals. The test field (see (A20)

in the main text) is taken for the illustration:
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The expression for current derivation can be simply identified as:

+o0 +oo ‘
= — / e f (N, Z)igtde dnf (S25)
Substituting the transformation: & = A cos and n* = \'sin 6 in the above equation, we get:
2m i t
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Substituting X = pcosy and Y = psiny in the above expression, and simplifying we get:
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Here, F(A\', Z) = A2 f(A!, Z) . We shift the polar integral limit by ¢:
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By splitting the integral, we get:
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Here, ...” ... denotes the second and third integrands are identical to the first integrand. The first

and third term in the above equation cancel each other owing to periodicity of cosine function. The

second term is an integral form of the Bessel’s function J,, (Weisstein, 2013):
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Upon re-transforming (p, ¢ to X,Y), we get:
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Therefore, the complete expression for @} is:
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Similarly, the expressions can be reduced for other components of test field u:
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In a similar manner, we derive the reduced expressions for the disturbance velocity v, is:
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Here, 7 = AWV X2 +Y2/2.

IV. OVERCOMING AN APPARENT DIVERGENCE

The volume integral with the following integrand:
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Here || stands for ‘or’. Upon substitution of the velocity fields, we obtain the following form:
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Numerically, this integral shows apparent divergence. Using the orthogonal property of Bessel’s
functions (Abramowitz and Stegun, 1972), we obtain:
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Further, upon use of the property of Dirac-Delta functions we arrive at a converged form:
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