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Supplementary Material

1. Statistical analysis of power scaling laws

In log-space the scaling relationships for the eddy azimuthal velocity and eddy length
scale establish a general linear system for which the scaling parameters can be estimated
using ordinary linear regression or Bayesian statistical methods. The general linear system
for the eddy velocity is

log(µU ) = β0,fU + βh/D,fU log(h/D) + βKC,fU log(KC) + βδ+,fU log(δ+) + εU (1.1)

and for the eddy length scale is

log(µL) = β0,L + βh/D,fL log(h/D) + βKC,fL log(KC) + βδ+,fL log(δ+) + εL (1.2)

where µU and µL are the expected value of the eddy velocity and eddy length scale
and βp, r are the scaling coefficients for p variables and r indicating the eddy length
(fL) or eddy velocity (fU ) scaling relationship. Assuming that the eddy velocity scales
Ue ∼ 〈v〉rms, we can use 〈v〉rms and 〈w〉rms as two readily measurable quantities from
which to estimate the scaling coefficients of fU and fL.

By assuming flat (uninformed) prior distributions and normally distributed errors in
the MCMC method, the MCMC and ordinary least squares methods are functionally
equivalent and yield similar results (Table 1). An informative graphical representation of
the MCMC coefficient estimates and relative size of confidence intervals is presented in
a Forest plot (figure 1) which shows the mean, inter-quartile range and 95% confidence
intervals of the posterior probability distributions. This highlights small effect sizes for
h/D and KC in fU and h/D in fL. This model has a coefficient of determination of
r2 = 0.88 for both 〈v〉rms/U0 and 〈w〉rms/U0, however with large confidence intervals for
h/D, δ+ and the intercepts.

An advantage of the Bayesian statistical approach implemented with the MCMC
method is the ability to examine the joint probability of the posterior distributions of
the scaling coefficients. The joint-marginal distributions provide insight into the structure
and potential correlation between scaling coefficient estimates. In addition to the small
effect size of h/D (figure 1), there is significant correlation between the scaling coefficient
for h/D and δ+ in fU and fL (figure 2). This is not surprising given that the flow depth
h is present in both δ+ and h/D. Due to the low effect size of h/D and correlation
with δ+, it is justified to remove dependence on h/D from the models of fU and fL.
Removing dependence on h/D significantly narrows the confidence intervals for the
remaining coefficients (figure 3) without reducing the predictive capacity of the model,
r2 = 0.88 (figure 4).

The influence of KC on 〈v〉rms/U0 and of δ+ and KC on 〈w〉rms/U0 remains weak
and to first-order 〈v〉rms/U0 ∼ δ+−2/3 and 〈w〉rms/U0 ∼ h/D (as would be predicted
based on conservation of mass arguments). The tidally-forced, shallow island wake has
weak non-linearity (with respect to upwelling and lateral velocity fluctuations). However,
there is sufficient non-linearity to establish a range of wake forms (symmetric through
vortex shedding) with a variety of complex flow structures that influences the spatial
distribution of upwelling significantly.
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OLS HMC

95% LCL MLE 95% UCL 95% LCL Mean 95% UCL

β0,fU -0.83 -0.75 -0.66 -0.85 -0.75 -0.65
βh/D,fU -0.16 0.01 0.18 -0.18 0.01 0.20
βKC,fU 0.02 0.07 0.12 0.02 0.07 0.13
βδ+,fU -0.87 -0.67 -0.47 -0.90 -0.67 -0.45
β0,fL 0.93 1.22 1.50 0.90 1.21 1.54
βh/D,fL -0.42 0.16 0.74 -0.50 0.16 0.79
βKC,fL -1.30 -1.14 -0.97 -1.33 -1.14 -0.96
βδ+,fL 0.47 1.14 1.81 0.37 1.14 1.88

Table 1. Estimates of scaling coefficients of fU and fL. Maximum likelihood estimate (MLE)
(from ordinary least squares - OLS) and the zeroth moment of the posterior probability
distribution (from Hamiltonian Monte Carlo - HMC). The 95% lower confidence level (LCL)
and 95% upper confidence level of the coefficient estimates. This model has a coefficient of
determination of r2 = 0.88 for both 〈v〉rms/U0 and 〈w〉rms/U0.
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Figure 1. Forest plot showing mean value (dot), inter-quartile range (thick line) and 95%
confidence interval of the posterior probability distributions for the scaling parameters of (a) fU
and (b) fL
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Figure 2. Joint posterior probability distributions between scaling parameter estimates for
h/D and δ+ in (a) fU and (b) fL
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Figure 3. Forest plot showing mean value (dot), inter-quartile range (thick line) and 95%
confidence interval of the posterior probability distributions for the scaling parameters of (a)
fU (KC, δ+) and (b) fL(KC, δ+)
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Figure 4. Scaling relationships for (a) 〈v〉rms/U0 and (b) 〈w〉rms/U0 based on the reduced
parametrisation of Ue/U0 ∼ fU (KC, δ+) and Le/D ∼ fL(KC, δ+). The black line indicates a
1:1 slope.


