Supplementary Material for "Ice Scallops: A Laboratory Investigation of the Ice-Water Interface"

Mitchell Bushuk^{1,2}[†], David M. Holland^{2,3}, Timothy P. Stanton⁴, Alon Stern² and Callum Gray⁵

¹Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, New Jersey, 08540, USA. ²Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, 10012, USA.

³Center for Global Sea Level Change, New York University Abu Dhabi, PO 129188 ,UAE ⁴Department of Oceanography, Naval Postgraduate School, Monterey, CA, 93943, USA. ⁵LaVision Inc, Ypsilanti, MI, 48197, USA.

(Received ?; revised ?; accepted ?. - To be entered by editorial office)

This document contains supplementary material for the manuscript "Ice Scallops: A Laboratory Investigation of the Ice-Water Interface."

1. Summary of Experiments Performed

• Table 1

2. Supplementary Figures

- Figure S1
- Figure S2

Experiment	U (m/s)	Water Temp (°C)	Bed Temp (°C)	Bed Angle (°)
1a	1.00	0.6	-3.9	0.7
1b	0.16	0.6	-3.9	0.0
2	0.85	0.6	-3.9	0.5
3	0.93	0.6	-3.9	0.0
4	0.98	0.6	-28.9	0.3
5	0.80	0.6	-3.9	0.4
6	0.65	0.6	-28.9	0.0
7	0.88	0.6	-3.9	0.2
8	1.04	0.6	-3.9	0.2
9	1.10	0.6	-15	0.4
10	0.40	0.2	-3.9	0.0
11	0.20	1.7	-3.9	0.0
12	0.18	3.0	-3.9	0.0
13	0.85	0.7	-3.9	0.5
14	0.70	0.9	-3.9	0.4
15	0.40	1.5	-3.9	0.0
16	0.85	1.0	-3.9	0.5
17	0.85	0.6	-3.9	0.5

TABLE 1. Summary of experiments performed in this study.

Supplementary Material for "Ice Scallops: A Laboratory Investigation of the Ice-Water Interface3"

FIGURE 1. Law of the wall relationship over scalloped ice from Experiment 3, showing the non-dimensional velocity u^+ plotted as a function of the logarithm of the non-dimensional distance z^+ . The red curve is a logarithmic fit to the data points in the "log-law" region. Boundary layer velocities are averaged over different x-values within the scallop trough (see Fig. 5f): (A) x = 0 to x = 10; (B) x = 10 to x = 20; (C) x = 20 to x = 30; (D) x = 30 to x = 40; (E) x = 40 to x = 50; and (F) x = 50 to x = 60.

FIGURE 2. TKE budget terms over a well-developed scallop from Experiment 3: (A) TKE (m^2/s^2) ; (B)-(E) S_{xz} , S_{xx} , S_{zx} , and S_{zz} shear production terms (m^2/s^3) ; (F) sum of the four shear production terms; (G) Dissipation term (m^2/s^3) ; and (H) Transport term (m^2/s^3) .