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Appendix A. Explicit form of the Craik-Leibovich equation

Explicit form of the continuity equation (3.2) in cylindrical coordinate system can be
written as

∂ΩE1 + ∂ΩE3 = −1

r
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)
. (A 1)

Using (A 1) and definition of the Stokes drift (3.9) utilise the derivation line
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Adopting the Bessel function definition J ′′1 = −r−1J ′1 − J1 + r−2J1 and employing the
Maplesoft analytical manipulator derive
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Appendix B. Nonlinear (Eulerian-mean) boundary-layer effect

The boundary layer analysis starts with adopting, as in the main paper body, the char-
acteristic length r0/k and time 1/σ. This mathematically computes the corresponding
Reynolds number Res = (r20σ)/(νk) � 1, where ν is the kinematic viscosity. Transition
and turbulent flow is neglected that implies an upper bound for applicable Reynolds
numbers (Eq. (6.2.3) in Faltinsen & Timokha 2009).
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B.1. Nonlinear boundary-layer equations

We consider, in parallel way, the non-dimensional inviscid ambient velocity field
v(r, θ, z, t) = v1r̂+v2θ̂+v3ẑ containing the non-zero mean-flow component wE(r, θ, z) =

〈v〉 = wE1 r̂+wE2 θ̂+wE3 ẑ, which is associated with (generally, unknown a priori) steady

streaming, and the non-dimensional velocity field V (r, θ, z, t) = U r̂ + V θ̂ + W ẑ, which
is affected by the viscous boundary layer at the vertical wall. We need also the ambient
pressure field p and P , which is associated with the viscous velocity field, forgetting on
the first stage that these are the same in the lowest-order approximation (this fact will
be shown later, mathematically).

The viscous flow is governed by the continuity equation

(rU)r + Vθ + rWz = 0, (B 1)

and the nondimensional Navier–Stokes equation
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where δ =
√

1/Res is an asymptotic measure of the boundary layer thickness δ at the
vertical wall and, therefore, δ is small parameter, which is assumed be smaller than the
forcing amplitude (2.5).

The viscous-flow velocity field must satisfy the no-slip condition at the wall and tend
to the inviscid velocity field (including the steady streaming component wE) away from
the boundary layer. These two conditions can mathematically be formalised as

V = 0 at r = k and ||V − v|| = O(δ) as k − r � O(δ). (B 3)

The forthcoming asymptotic derivations will be done in terms of the differences

V = V − v = (R,Θ,Z) = (U − u, V − v,W − w) and P = P − p, (B 4)

between viscous and ambient flow parameters.
Because the ambient flow satisfies (B 1), (B 2) with δ = 0, the governing equations for

the differences take the form

(rR)r +Θθ + r Zz = 0, (B 5a)
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The no-slip condition (B 3) transforms to

V = (R,Θ,Z) = V − v = (−v,−u,−w) at r = k, (B 6)

but the closeness of V and v far from the boundary layer will be rewritten as

||V || = O(δ) for (k − r)� O(δ); 0 6 r < k. (B 7)

To clarify what is the mathematical infinity for the closed domain, we introduce the
boundary-layer spatial variable ξ as

r = k − δξ, 0 < ξ = O(1) (B 8)

and consider the differences as functions of ξ, t and θ, z, i.e., R = R(ξ, t; θ, z), Θ =
Θ(ξ, t; θ, z), Z = Z(ξ, t; θ, z) and P = P(ξ, t; θ, z). Furthermore, we look for the asymp-
totic solution of (B 5)-(B 7)

R = δR1 + ..., Θ = Θ0 + δΘ1 + ..., Z = Z0 + δZ1 + ..., P = δP1 + ... . (B 9)

One must note that R0 = 0 because the normal velocity is zero at r = k, but the
zero-order pressure difference P0 = 0 (the ambient pressure is continuous through the
boundary layer) is according to (B 5b) rewritten in the ξ, t; θ, z coordinates.

Utilising the rule (·)ξ = −δ(·)r for R, Θ and Z and keeping only the O(1) terms derive

R1ξ = Z0z +Θ0θ/k (B 10)

from (B 5a), but (B 5c) and (B 5d) transform to the two equations

Θ̇0 −Θ0ξξ −R1Θ0ξ +
Θ0Θ0θ

k
+ Z0Θ0z + ξūrΘ0ξ +

1

k
[v̄Θ0θ + v̄θΘ0] + [w̄Θ0z + v̄zZ0] = 0,

(B 11a)

Ż0 − Z0ξξ −R1Z0ξ +
Θ0Z0θ

k
+ Z0Z0z + ξūrZ0ξ +

1

k
[v̄Z0θ + w̄θΘ0] + [w̄Z0z + w̄zZ0] = 0,

(B 11b)
in which the bars denote projections of the vector-function v, and its derivatives, on the
wall (these are simply expanded in a Taylor series by δ) so that all coefficients in (B 11)
become the known time-depending functions, which parametrically depend on θ and z,

ūr(t; θ, z) = ur(k, θ, z, t), v̄(t; θ, z) = v(k, θ, z, t), v̄θ(t; θ, z) = vθ(k, θ, z, t),

w̄(t; θ, z) = w(k, θ, z, t), v̄z(t; θ, z) = wz(k, θ, z, t).

Eqs. (B 4), (B 5) are, in fact, nonlinear boundary-layer equations, which are written
in terms of the differences between viscous and inviscid (including steady streaming)
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components. According to (B 6), the solution of these ‘difference field’ equations (B 11)
satisfies the inhomogeneous boundary conditions

R1 = 0, Θ0 = −v̄, Z0 = −w̄ at ξ = 0 (B 12)

where the right-hand side is the minus projection of tangential components of the inviscid
ambient flow.

Because Θ0, Z0 = O(1), but R1 corresponds to the first-order approximation in (B 9),
the asymptotic condition (B 7) transforms to the form

|Θ0|+ |Z0| → 0 and |R1| → O(1) as ξ → +∞. (B 13)

B.2. Asymptotic solution of the nonlinear boundary-layer problem

The steady-state wave solution by Faltinsen et al. (2016) implies an asymptotic repre-
sentation of the inviscid (ambient) velocity field by the small parameter O(ε1/3) where the
lowest-order component takes the form (2.3) but the second-order approximation includes
the steady-streaming component and is defined by (3.3). Because the nonlinear boundary-
layer problem (B 10)–(B 13) governs the O(1) approximation on the O(δ) scale and the
asymptotic condition (2.5) is satisfied, one can consider an asymptotic approximation in
terms of O(ε1/3) as follows

Θ0 = Θ
(1/3)
0 +Θ

(2/3)
0 +O(ε)..., Z0 = Z

(1/3)
0 + Z

(2/3)
0 +O(ε)...,

R1 = R
(1/3)
1 +R

(2/3)
1 +O(ε)...

(B 14)

for ξ > 0, −∞ < t <∞ and z < 0, −π 6 θ < π.

B.2.1. The O(ε1/3) component

Taking (2.3) derives that the first-order approximation of (B 10)–(B 12) comes from
the linear parabolic problems (ξ > 0, −∞ < t <∞):

Θ̇
(1/3)
0 −Θ(1/3)

0ξξ = 0, Θ
(1/3)
0 (0, t; θ, z) = −J1(k)

k
ez [cos t θ′c(θ) + sin t θ′s(θ)] , (B 15a)

Ż
(1/3)
0 − Z(1/3)

0ξξ = 0, Z
(1/3)
0 (0, t; θ, z) = −J1(k) ez [cos t θc(θ) + sin t θs(θ)] , (B 15b)

which consists of the two independent linear Stokes boundary-layer equations (Batchelor
2000) parametrically dependent on z < 0, −π 6 θ < π. The exact time-periodic solution
of (B 15) reads, according to § 3.1.1 in Polyanin & Nasaikinskii (2015), as

Θ
(1/3)
0 (ξ, t; θ, z) = −J1(k)

k
ez−αξ [θ′c(θ) cos(t− αξ) + θ′s(θ) sin(t− αξ)] , (B 16a)

Z
(1/3)
0 (ξ, t; θ, z) = −J1(k) ez−αξ [θc(θ) cos(t− αξ) + θs(θ) sin(t− αξ)] , (B 16b)

(α = 1/
√

2), where the e−αξ-multiplier corresponds to e−α(k−r)/δ in the original nondi-
mensional (r, θ, z)-coordinates, which exponentially decays and becomes small as (k−r) =
O(1).

Substituting (B 16) into the continuity equation (B 10) and using the first boundary
condition of (B 12) gives

R
(1/3)
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∫ ξ

0
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0z +Θ

(1/3)
0θ /k) dξ = − 1

2α
J1(k) ez

(
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k2

)
×
{
θc(θ)

[
sin t+ cos t− e−αξ(sin(t− αξ) + cos(t− αξ))

]
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+ θs(θ)
[

sin t− cot t− e−αξ(sin(t− αξ)− cos(t− αξ))
]}
. (B 17)

One can see that |R(1/3)
1 | → O(ε1/3) and Θ

(1/3)
0 ∼ Z

(1/3)
0 → 0 as ξ → +∞, in what

follows, the asymptotic condition (B 13) is automatically satisfied.
Eqs. (B 16), (B 17) present the well-known solution of the linear boundary-layer prob-

lem given in term of the differences between viscous and inviscid velocity fields. To restore
the viscous velocity field V , one should take this solution, the lowest-order inviscid flow
component (2.3), substitute ξ = (k − r)/δ. This gives

U (1/3) = v
(1/3)
1 , V (1/3) = v

(1/3)
2 +Θ

(1/3)
0 ((k − r)/δ, t; θ, z),

W (1/3) = v
(1/3)
3 + Z

(1/3)
0 ((k − r)/δ, t; θ, z).

This time-periodic solution is zero on the tank surface and rapidly converges to v(1/3)

away from the boundary layer. It does not contain a steady-flow component, which is
expected in the second-order approximation.

B.2.2. The O(ε2/3) component; steady streaming

Inserting (B 16) and (B 17) into (B 11) leads to the inhomogeneous parabolic equations

with respect to Θ
(2/3)
0 and Z

(2/3)
0

Θ̇
(2/3)
0 −Θ(2/3)

0ξξ = R
(1/3)
1 Θ
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0ξ −

Θ
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0 Θ
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0θ

k
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0 Θ
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0z − ξū(1/3)r Θ

(1/3)
0ξ

− 1

k

[
v̄(1/3)Θ
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0θ + v̄

(1/3)
θ Θ

(1/3)
0

]
−
[
w̄(1/3)Θ

(1/3)
0z + v̄(1/3)z Z

(1/3)
0

]
, (B 18a)

Ż
(2/3)
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0ξξ = R
(1/3)
1 Z

(1/3)
0ξ −

Θ
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0 Z

(1/3)
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− 1
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[
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(1/3)
0θ + w̄

(1/3)
θ Θ

(1/3)
0

]
−
[
w̄(1/3)Z

(1/3)
0z + w̄(1/3)

z Z
(1/3)
0

]
, (B 18b)

where the right-hand sides are explicitly-given functions.
Because the steady streaming effect is formally included into the ambient flow, the

time-periodic solution of (B 18) (governing the differences!) should obligatory decay at
the infinity,

Θ
(2/3)
0 (ξ, t; θ, z)→ 0 and Z

(2/3)
0 (ξ, t; θ, z)→ 0 as ξ → +∞. (B 19)

In addition, the second-order differences should satisfy the boundary conditions (B 12)
⇒

Θ
(2/3)
0 (0, t; θ, z) = −v̄(2/3), (B 20a)

Z
(2/3)
0 (0, t; θ, z) = −w̄(2/3), (B 20b)

where, according to (3.3), the right-hand sides include, formally, the time-independent
projections of wE = O(ε2/3) on r = k.

When solving the linear inhomogeneous problem (B 18)-(B 20) with respect to the un-

knowns Θ
(2/3)
0 and Z(2/3), we should distinguish the time-independent (steady) quantities

as well as the cos 2t and sin 2t harmonics.
Huge derivations show that a unique solution exists for the cos 2t and sin 2t compo-

nents. This means that these components of the difference field exist only in the boundary
layer but vanish away from it.
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However, considering the time-averaged (time-independent, steady) difference field
yields a requirement on wE . Indeed, derivations show that the time-averaged component
of (B 18), (B 19) (without the boundary conditions (B 20)!!!) has the following unique
solution〈

Θ
(2/3)
0

〉
(ξ; θ, z) =

(k2 − 1)J2
1 (k)

4k3α2
e−αξ+2z

{
(ab− āb̄)

×
[
− 1

2e
−αξ + (αξ − 1) sinαξ + (αξ + 2) cosαξ

]
+
[
1
2e
−αξ + (αξ + 4) sinαξ + (1− αξ) cos(αξ)

]
×
[
(ab̄+ āb) cos 2θ + 1

2 (b2 + b̄2 − a2 − ā2) sin 2θ
]}
, (B 21a)

〈
Z

(2/3)
0

〉
(ξ; θ, z) =

J2
1 (k)

8k2α2
e−αξ+2z

{
1
2 (a2 + ā2 + b2 + b̄2)

×
[
(k2 + 1)e−αξ + 2[k2(αξ + 4)− αξ] sinαξ − 2(k2 − 1)(αξ − 1) cosαξ

]
+
[
1
2 (a2 + ā2 − b2 − b̄2) cos 2θ + (ab̄+ āb) sin 2θ

]
× (k2 − 1)

(
e−αξ + 2(αξ + 4) sinαξ + 2(1− αξ) cosαξ

)
. (B 21b)

The time-averaging in the remaining boundary conditions (B 20) transforms them to〈
Θ

(2/3)
0 (0, t; θ, z)

〉
= −wE2 (k, θ, z),

〈
Z

(2/3)
0 (0, t; θ, z)

〉
= −wE3 (k, θ, z). (B 22)

Using (B 21) with ξ = 0 derives from (B 22) the tangential boundary condition for the
mean Eulerian wE :

wE2 (k, θ, z) = −
〈
Θ

(2/3)
0

〉
(0; θ, z) = −3(k2 − 1)J2

1 (k)

4k3
e2z
{

(ab− āb̄)︸ ︷︷ ︸
Ξ

+ (ab̄+ āb) cos 2θ + 1
2 (b2 + b̄2 − a2 − ā2) sin 2θ

}
, (B 23a)

wE3 (k, θ, z) = −
〈
Z

(2/3)
0

〉
(0; θ, z) = −J

2
1 (k)

4k2
e2z
{

1
2 (a2 + ā2 + b2 + b̄2)(3k2 − 1)

+ 3(k2 − 1)
[
1
2 (a2 + ā2 − b2 − b̄2) cos 2θ + (ab̄+ āb) sin 2θ

]}
(B 23b)

on the vertical wall.

Appendix C. The Stokes drift in a rectangular channel

For the incompressible wave flow v, the first-order Lagrangian displacement is d =∫
vdt; it is also solenoidal. The Stokes drift velocity (in the second-order approximation)

equals to (see, equation (3.9))

wS =
1

2
∇× 〈v × d〉 . (C 1)

Assume that v implies a three-dimensional progressive wave in the Oy direction in a
rectangular channel confined by the vertical walls at x = ±a, the bottom z = −h, and
the mean free surface at z = 0. We consider the cross-sectional plane at y = 0, which
intersects the time-changing two-dimensional cross-sectional area C(t) confined by the
solid part (walls and bottom, γ0), and the free-surface curve γ(t) by z = ζ(x, t). Within
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the framework of the first-order (linear) approximation, ζ, due to the linear kinematic
boundary condition, is linked with the first-order Lagrangian displacements d as follows

z = ζ(x, t) = d3(x, 0, 0, t) (C 2)

(fluid particles are kept on the free surface).
We assume that wS , C(t), and boundaries γ0 and γ(t) satisfy assumptions of the Stokes

integration theorem. Keeping only quadratic terms and taking into account that normal
velocities (and Lagrange displacements) are zero on the solid parts (walls and bottom)
gives

MS =

∫
〈C〉

1

2
∇× 〈v × d〉 · ŷdydz =

∫ a

−a

1

2
〈(v2d3 − v3d2)|z=0,y=0〉dx

=

∫ a

−a
〈(v2d3)|z=0,y=0〉dx =

∫ a

−a
〈(v2)|z=0,y=0ζ〉dx =

〈∫ a

−a

∫ ζ

−h
v2|y=0dzdx

〉
. (C 3)

The backward reading of the derivation line (C 3) shows that, in the second-order
approximation, the mass-flux through the plane y = 0 due to moving free surface is
the same as the Stokes mass-transport. The latter fact may be violated if there is an
inflow/outflow though the vertical walls as in § 4, i.e. the first-order horizontal Lagrangian
displacements are not zero, e.g., at x = −a. The cross-displacements cause an extra non-
zero quantity of the non-Eulerian mean nature in (C 3) as it happened in (4.6).
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