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1. Cell orientation and Jeffery’s orbits

For exhaustiveness and for the comfort of the reader, we give additional details for the
section 2 of the paper. In particular, we present the other commonly used convention for
Euler angles and the associated Jeffery equation.

We consider cells placed in a shear flow with flow direction Oz′, shear gradient direction
Oy′ and vorticity axis Ox′. To characterize the orientation and motion of cells, we shall
use the Euler angles. Let us consider, as a first approximation for a RBC, an ellipsoid of
equation

r2x2 + y2 + z2 = 1. (1.1)

r is the aspect ratio, which will be larger than 1 here (oblate ellipsoid). This ellipsoid may
rotate and we use the Euler angles to describe this rotation in the fixed coordinate system
Ox′y′z′ that coincides initially with the system Oxyz associated with the ellipsoid.

When using Euler angles, one must take care to specify which convention is used to
make the successive rotations, in particular if a rigid body is attached to the rotating
system. We shall review the two conventions usually used in the RBC dynamics literature.

In the original paper by Jeffery (Jeffery (1922)), θ is obtained by rotation around
the Oz′ = Oz axis, then φ is obtained by rotation around the Ox′ axis, such that it
is defined as the angle between the planes Ox′y′ and Ox′x (see Fig. 1). A third angle
denotes rotation around the Ox axis and will not be used here, as those rotations around
the axis of symmetry of the cell will not be measured. In the absence of such a rotation,
φ is also the angle between Oz and Oz′. With this convention, when φ = 0 and θ = 90◦,
the cell face is in the Ox′z′ plane.

If the cells are viewed from the vorticity axis Ox′, the angle φ can be easily determined,
as it is the angle between Oy′ and the projection of the cell axis of revolution Ox onto
the shear plane Oy′z′, which is the small axis of symmetry of the projection of the cell
onto the shear plane.

If the cells are viewed from the velocity gradient axis Oy′, as in our experiments, the
angle Ψ defined as the angle between Ox′ and the projection of the cell axis of revolution
Ox onto the plane Ox′z′, can be easily determined (see. Fig. 1). This angle is also the
angle made by the projection of the cell compared to the flow direction. Ψ is related to
θ and φ through tan Ψ = tan θ sinφ.

If the shear flow in the z′ direction with y′ the shear gradient direction and x′ the
vorticity direction, the motion of a rigid ellipsoid in creeping flow is given by (Jeffery
(1922)):
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Figure 1. The Euler angles used to describe the flipping regime. Convention used in Jeffery
(1922) and in the paper. The large black arrow shows the viewing direction in the experiments,
where projection on the x′z′ plane is seen (black ellipse).

tan θ =
C

r(r−2 cos2 φ+ sin2 φ)1/2
, (1.2)

tanφ = r−1 tan
γ̇t

r + r−1
, (1.3)

θ̇ = γ̇
r2 − 1

r2 + 1
sin θ cos θ sinφ cosφ, (1.4)

φ̇ =
γ̇

1 + r−2
(r−2 cos2 φ+ sin2 φ), (1.5)

with C ≡ r tan θ0 the orbit parameter. θ oscillates between θ0 and arctanC (spinning
motion).

We shall refer to these possible motions as flipping motions. Among them, θ0 = 0◦

corresponds to what is called rolling motion (θ always equal to 0), while θ0 = 90◦ corre-
sponds to tumbling (θ always equal to 90◦). Note that when r > 1, φ̇ is minimal when
φ = 0, which corresponds to the cell aligned with the flow direction.

We now comment on the convention used in Hinch & Leal (1979), which is the most
common one in the general literature: first φ is obtained by rotation around the Ox = Ox′

axis and then θ denotes rotation around the intersection between the Oyz and Oy′z′

planes, which is called the line of nodes, and coincides with Oy if there is no rotation
around the Ox axis. See Fig. 2. With this convention, when φ = 0 and θ = π/2, the cell
face is in the Ox′y′ plane. For Eq. 1.5 to be still valid (in particular, to have minimal
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Figure 2. The Euler angles used in the standard convention, as in Hinch & Leal (1979) (See
Fig. 1 in that paper).

velocity in this position) it imposes that the flow is in the Oy′ direction, as in Hinch &
Leal (1979). Note eventually that both schemes in Figs. 1 and 2 are the same providing
the axis y′ and z′ are replaced by −z′ and y′ on the right. If one wants to consider
positive shear rates in both cases, as usually done by convention, it implies that the flow
is reversed between the two cases, which eventually implies that a minus sign must be
added in Eqs. 1.3 and 1.5 to be in agreement with the new scheme. This leads to the Eq.
(3) in Hinch & Leal (1979).

2. Technical details for previous papers

We give here some technical details for the papers discussed in the article, in particular
the notations used for the angles, and the description of regimes, that can differ between
different papers.

2.1. Experimental papers

• Goldsmith & Marlow (1972): the outer viscosity η0 is that of plasma, and the highest
shear rate was 513 s−1. High suspending fluid viscosity (520 mPa.s) and low shear rate
(around 1 s−1) is also considered. In the first experiment, the optical axis is in the vorticity
direction Ox′, which allows to directly determine φ (called φz in the original paper). On
the other hand, determining θ (θz in the original paper) is not direct. If assumption on
the cell shape is made, θ can be deduced from the aspect ratio of the projected shape
onto the shear place Oy′z′. In the second experiment, which is similar to ours, the optical
axis is the shear direction Oy′. They could measure Ψ, which is called φy in the original
paper.
• Bitbol (1986): The cells are observed in a cone-plate geometry allowing for shear

rates between 1 and 200 s−1. Viscosity η0 of the suspending medium was between 1 and
10 mPa.s. In this paper, φ and θ are defined as in the present work. The cells are observed
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along the shear direction that is, rolling cell will appear edge-on. Because of the limited
experimental time due to sedimentation, experiments in a large tube were carried on,
in which no direct observation was possible. Instead, light scattering measurement were
made, which allowed to make some assertions that remained qualitative by lack of theory
for light scattering by RBCs.
Light scattering experiments allowed to measure the ratio between the number of cells
in C = 0 orbits and the total number of cells aligned with the flow, as a function of η0
and γ̇. We make the following remark: at high shear rates, the cells aligned with the flow
may be tank-treading cells, while at lower shear rates, tank-treading cells seen from the
shear direction appears more or less circular, or even perpendicular to the flow, which
makes the interpretation of Bitbol’s result more complicate. In addition, non negligible
contribution from cells in other flipping orbits may arise. Anyhow, for a given viscosity,
this ratio first increases with the shear rate (apparition of orbits C = 0) then decreases
(apparition of tank-treading cells).
• Dupire et al. (2012): The carrying fluid viscosities η0 are 7 and 29 mPa.s, and the

shear rate goes from 0 to 15 s−1 in the first case and to 2.7 s−1 in the second case.
The cells flow in a large parallelepiped flow chamber where around 20 cells were followed
individually thanks to two cameras that allow visualisation along both the shear and
vorticity axis. Thanks to this, both angles Ψ and φ are measured. For Ψ, the discussion
is centered on its maximal value (when the cell is seen edge-on), which is equal to the
orbit angle θ0. θ0 and φ correspond respectively to 90 − φ and θ in the original paper
(see Fig.1 in Dupire et al. (2012)).

• Fischer & Korzeniewski (2013): They consider a Poiseuille flow (so probably only
the increasing γ̇ case is considered, though we do not know what the upstream conditions
are) and observation along the vorticity axis direction Ox′ are made. Their optical set-up
allows the authors to detect cells that are edge-on so as to detect the flipping to tank-
treading transition by counting the proportion of cells that are edge-on as a function of
their radial position.

2.2. Numerical simulations

Numerous numerical studies are now devoted to the issue of RBC dynamics under shear
flow. We focus here only on the most recent and relevant papers.

In Cordasco & Bagchi (2013), a state diagram with different shapes, in particular RBC
shapes, is explored. This study is enriched in Cordasco et al. (2014) where they compare
two different stress free shapes (for shear elasticity): biconcave discoid (as in Cordasco &
Bagchi (2013)) and quasi spherical oblate ellipsoid. In Peng et al. (2014) , the effect of
this stress free shape on the transition threshold to tank-treading is also discussed, while
its influence on the orbital drift is discussed in Mendez & Abkarian (2018). In Sinha
& Graham (2015), they consider the case of biconcave discoid as a stress free shape for
shear elasticity but consider several cases of space-dependent spontaneous curvature that
is, three cases of equilibrium shapes for bending energy : biconcave discoid, sphere and
oblate ellipsoid. In all papers but in Peng et al. (2014) where a more complex modeling is
introduced, the Skalak law for shear elasticity is chosen (it is justified in Sinha & Graham
(2015) by comparison with other laws by simulating stretching with optical tweezers). η0
is typically varied between 1 and 100 mPa.s and the stress η0γ̇ does not exceed 5 Pa (20
Pa in the more recent Mauer et al. (2018)).

The equivalence for notations for angles is:
• Cordasco & Bagchi (2013) : π/2 − θxy for θ and π/2 − φ for φ
• Cordasco et al. (2014) : π/2 − θ for θ and π/2 − φ for φ
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• Peng et al. (2014) : π/2 − θ for θ and ψ for φ
• Sinha & Graham (2015) : ξ0 for θ and π/2 − θ0 for φ
• Mendez & Abkarian (2018) : ϕ for θ and θ for φ

These papers establish a phase diagram that is qualitatively coherent with that par-
tially drawn by experiments. It can be divided into four zones, the frontier of which
depending on the considered equilibrium shapes (see Fig. 3 in the main paper). This
diagram is obtained by starting with a cell with a given orientation θ, and following its
time evolution. The diagram refers to the stationary dynamics to which it converges, at
least when the simulation time is long enough. From the way the simulations are run,
we can consider they correspond more to the increasing γ̇ case (but to a sharp increase).
None of the papers consider the decreasing case, nor the smoothly increasing case.

• (i) At small η0, that is, in the physiological condition, the considered papers yield
contradictory results. In Cordasco & Bagchi (2013), Cordasco et al. (2014) and Mendez
& Abkarian (2018), it is found that flipping motions are not stable, and the cell exhibits
drift (coupled with flipping) towards rolling. According to Cordasco & Bagchi (2013) and
Cordasco et al. (2014), the time needed for this orbit to be reached does not depend on
shear stress τ if the stress-free state is an oblate ellipsoid but decreases with increasing
τ when the stress-free state is the discoid shape. The characteristic times are not given
for low stress because of the shortness of the simulation run. For γ̇ = 300 s−1, the
characteristic time is less than 1 s. This is in agreement with Bitbol observation (see
Bitbol 1986) of a typical time of order 100×γ̇−1. On the contrary, it is shown in Sinha &
Graham (2015) that the stable configuration is tumbling for all explored shear stresses.
• (ii) In this high stress and high viscosity region, tank-treading is observed. If one

starts with arbitrary θ, convergence towards tumbling is first observed, then tank-treading
appears. As pointed out earlier, this tank-treading motion may be a rolling motion of
a strongly deformed cell. Lack of information about the position of the material point
originally located in the dimple does not allow to draw definitive conclusion.
• (ii’) As τ decreases, more complex ”tank-treading like” behavior appears : tank-

treading with swinging (small oscillation of the cell around the vorticity axis), tank-
treading with kayaking (small oscillations of the cell small axis across the shear plane
that is, θ oscillates around 90◦), hovering which is tank treading with the cell small
axis off the shear plane. Note that those terms refer to the work by Cordasco et al.. In
Sinha & Graham (2015), kayaking is referred as wobbling while hovering is denoted tilted
tank-treading. The parameter ranges of all these states depend a lot on the equilibrium
configuration of the cell and in all cases, they are rather narrow.
• (iii) In low stress and high viscosity region, Cordasco et al. found that orbits with

low angle θ0 are unstable and drift towards orbits with higher angles, which are stable.
In two successive papers, they however found that orbits close to rolling drift towards
rolling (see Cordasco & Bagchi 2013) or are unstable (see Cordasco et al. 2014). For
spherical spontaneous curvature, Sinha and Graham observe Jeffery orbits (which they
call kayaking) with angles that are close either to 0 or 90◦. For oblate ellipsoidal spon-
taneous curvature they report some ”flip-flopping motion” which they say to be close to
tumbling without being a Jeffery orbit. However, they claim that this motion is identical
to the ”flipping motion” described in Dupire et al., which is clearly described in this
paper as a Jeffery orbit. Finally, in Mauer et al. (2018) and Mendez & Abkarian (2018),
in the whole low stress region (until ∼ 0.01 Pa, see Fig.2 in that paper), and whatever
the viscosity, rolling is observed.



6 C. Minetti , V. Audemar, T. Podgorski and G. Coupier

REFERENCES

Bitbol, M. 1986 Red blood cell orientation in orbit c = 0. Biophys. J. 49, 1055.
Cordasco, D. & Bagchi, P. 2013 Orbital drift of capsules and red blood cells in shear flow.

Phys. Fluids 25, 091902.
Cordasco, D., Yazdani, A. & Bagchi, P. 2014 Comparison of erythrocyte dynamics in shear

flow under different stress-free configurations. Phys. Fluids 26, 041902.
Dupire, J., Socol, M. & Viallat, A. 2012 Full dynamics of a red blood cell in shear flow.

Proc. Nat. Acad. Sci. USA 109, 20808.
Fischer, T.M. & Korzeniewski, R. 2013 Threshold shear stress for the transition between

tumbling and tank-treading of red blood cells in shear flow: dependence on the viscosity of
the suspending medium. J. Fluid Mech. 736, 351.

Goldsmith, H. L. & Marlow, J. 1972 Flow behaviour of erythrocytes. I. rotation and defor-
mation in dilute suspensions. Proc. R. Soc. B 182, 351.

Hinch, E. J. & Leal, L. G. 1979 Rotation of small non-axisymmetric particles in a simple
shear flow. J. Fluid. Mech. 92, 591–608.

Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R.
Soc. Lond. A 102, 161.

Mauer, J., Mendez, S., Lanotte, L., Nicoud, F., Abkarian, M., Gompper, G. & Fe-
dosov, D. A. 2018 Flow-induced transitions of red blood cell shapes under shear. Phys.
Rev. Lett. 121, 118103.

Mendez, S. & Abkarian, M. 2018 In-plane elasticity controls the full dynamics of red blood
cells in shear flow. Phys. Rev. Fluids 3, 101101.

Peng, Z., Mashayekh, A. & Zhu, Q. 2014 Erythrocyte responses in low-shear-rate flows:
effects of non-biconcave stress-free state in the cytoskeleton. J. Fluid Mech. 742, 96118.

Sinha, K. & Graham, M. D. 2015 Dynamics of a single red blood cell in simple shear flow.
Phys. Rev. E 92, 042710.


