Water entry of rounded cylindrical bodies with different aspect ratios and surface conditions

Nayoung Kim¹ and Hyungmin Park^{1,2,*}

¹Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul 08826, Korea

²Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea

List of movies

Movie 1. The water entry of projectiles (smooth surface) at $U_0 = 4.2 \text{ m/s}$

Movie 2. The water entry of projectiles (rough surface) at $U_0 = 4.2$ m/s

Movie 3. The sinking behavior of body with AR 2 at $U_0 = 4.2 \text{ m/s}$

List of figures

Figure S1. Variation of dimensionless water film thickness (e/D) moving along the side wall of the projectile $(AR \ 8)$: (a) $U_0 = 2.5 \text{ m/s}$; (b) 4.2 m/s. Here, D (= 40 mm) is the projectile diameter and U_0 is the impact velocity. The temporal variation of thickness becomes larger as U_0 increases, due to higher inertia.

Figure S1. Variation of dimensionless water film thickness (e/D) moving along the side wall of the projectile (AR 8): (a) $U_o = 2.5$ m/s; (b) 4.2 m/s. Here, D (= 40 mm) is the projectile diameter and U_o is the impact velocity. The temporal variation of thickness becomes larger as U_o increases, due to higher inertia.