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1. Proofs of virtual conservation theorems

Theorem 1 (Virtual Kelvin’s theorem). Let C(t) be a closed curve moving with
a globally smooth virtual velocity v. Then the circulation Γ is a virtual Lagrangian scalar
as

DvΓ

Dvt
= 0. (1.1)

Proof. Expanding the virtual material derivative of Γ in (1.1) and considering the
rate of change of a line element

Dvdl

Dvt
= dl ·∇v, (1.2)

we have
DvΓ

Dvt
=

∮
C(t)

[
∂u

∂t
· dl+ (v ·∇u) · dl+ (dl ·∇v) · u

]
. (1.3)

Applying vector identities to last two terms in the integrand yields

DvΓ

Dvt
=

∮
C(t)

[
∂u

∂t
+∇(v · u)− v × ω

]
· dl. (1.4)

According to the Stokes theorem and vorticity transport equation

∂ω

∂t
−∇× (v × ω) = 0, (1.5)

where ω is transported in v, we have

DvΓ

Dvt
=

∫
S(t)

[
∂ω

∂t
−∇× (v × ω)

]
· ndS = 0, (1.6)

where S(t) is a surface bounded by C(t) with the surface normal n.

Theorem 2 (Virtual Helmholtz’s theorem). (1) Let a vortex tube move with a
globally smooth virtual velocity, and then the vorticity flux

Φ =

∫
S
ω · ndS (1.7)
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through cross section S of the vortex tube is a virtual Lagrangian scalar as

DvΦ

Dvt
= 0. (1.8)

(2) Let a vortex line move with a globally smooth virtual velocity, and then the line
elements moving with the virtual velocity lying on the vortex line at some instant continue
to lie on that vortex line, i.e.

Dv

Dvt

(
ω

ρ
× δl

)
= 0 (1.9)

is satisfied with the initial condition

ω

ρ
× δl = 0. (1.10)

Proof. (1) We apply Stokes’ theorem to (1.1) in virtual Kelvin’s theorem and then
obtain

DvΦ

Dvt
=

Dv

Dvt

∫
S
ω · ndS =

Dv

Dvt

∮
C
u · dl = 0. (1.11)

(2) First we expand the left hand side (l.h.s.) of (1.9) as

Dv

Dvt

(
ω

ρ
× δl

)
=

Dv

Dvt

(
ω

ρ

)
× δl+

ω

ρ
× Dv(δl)

Dvt
. (1.12)

Then we derive the virtual transport equation for ω/ρ

Dv

Dvt

(
ω

ρ

)
=

1

ρ

Dvω

Dvt
− ω

ρ2
Dvρ

Dvt
, (1.13)

and re-express (1.5) as the virtual transport equation for vorticity

Dvω

Dvt
= ω ·∇v − (∇ · v)ω. (1.14)

Substituting (1.14) and the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0 (1.15)

into the first and second terms on the r.h.s of (1.13), respectively, we obtain

Dv

Dvt

(
ω

ρ

)
=

ω

ρ
·∇v + χ

ω

ρ
(1.16)

with a scalar

χ ≡ −1

ρ
vd ·∇ρ−∇ · vd. (1.17)

Then substituting (1.16) and (1.2) into the r.h.s. of (1.12) yields

Dv

Dvt

(
ω

ρ
× δl

)
=

(
ω

ρ
·∇v

)
× δl+

ω

ρ
× (δl ·∇v) + χ

(
ω

ρ
× δl

)
. (1.18)

At the initial time t = t0, a virtual material line element δl governed by (1.2) coincides
with the local vector ω/ρ. The initial condition (1.10) is equivalent to ϱδl0 = ω0/ρ0
with a scalar ϱ, so the first two terms on the r.h.s. of (1.18) cancel each other at t = t0.
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In addition, (1.10) implies that the last term on the r.h.s. of (1.18) is also vanishing at
t = t0. Thus (1.18) is reduced to

Dv

Dvt

(
ω

ρ
× δl

)
= 0 (1.19)

at t = t0 with the initial condition (1.10). Finally, (1.9) is valid because all the terms on
the r.h.s. of (1.18) are always vanishing with (ω/ρ)× δl = 0.

Theorem 3 (Virtual Ertel’s theorem). Let ϕ be a virtual Lagrangian scalar
convected by a globally smooth virtual velocity as

Dvϕ

Dvt
= 0 (1.20)

with
ω

ρ
·∇ϕ = 0 (1.21)

at the initial time, and then (ω/ρ) ·∇ϕ is also a virtual Lagrangian scalar as

Dv

Dvt

(
ω

ρ
·∇ϕ

)
= 0. (1.22)

Proof. First we expand the l.h.s. of (1.22) as

Dv

Dvt

(
ω

ρ
·∇ϕ

)
= ∇ϕ · Dv

Dvt

(
ω

ρ

)
+

ω

ρ
· Dv(∇ϕ)

Dvt
. (1.23)

Taking the gradient of (1.20), we have

Dv(∇ϕ)

Dvt
= ∇

(
Dvϕ

Dvt

)
−∇ϕ ·∇v −∇ϕ× (∇× v). (1.24)

Substituting (1.16) and (1.24) into (1.23) yields

Dv

Dvt

(
ω

ρ
·∇ϕ

)
= χ

(
ω

ρ
·∇ϕ

)
= 0, (1.25)

where the r.h.s. vanishes when (1.21) is satisfied at the initial time.

Theorem 4 (Virtual conservation of helicity). Let a volume V(t) enclosed by
a vortex surface move with a smooth virtual velocity, and then the helicity

H ≡
∫
V
ω · u dV (1.26)

is a virtual Lagrangian scalar as

DvH

Dvt
= 0. (1.27)

Proof. First we derive the virtual transport equation for the helicity density as

Dvh

Dvt
= ω · Dvu

Dvt
+ u · Dvω

Dvt
. (1.28)
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Substituting

∂u

∂t
+ (u ·∇)u = ∇Π + F (1.29)

and (1.14) into (1.28) and expanding the r.h.s. of (1.28), we have

Dvh

Dvt
= (∇Π + F − u ·∇u+ v ·∇u) · ω + [ω ·∇v − (∇ · v)ω] · u. (1.30)

Substituting the constraint of the virtual velocity

vd × ω = F +∇Ψ (1.31)

into (1.30) and rearranging terms on the r.h.s. of (1.30), we have

Dvh

Dvt
= −∇

(
Π + Ψ +

u2

2

)
· ω + (v ·∇u+∇v · u) · ω − (∇ · v)h (1.32)

Applying vector identities to the r.h.s. of (1.32) yields

Dvh

Dvt
= ∇ ·

[(
Π + Ψ +

u2

2
− u · v

)
ω

]
− (∇ · v)h. (1.33)

Applying the Reynolds transport theorem to (1.26) yields

DvH

Dvt
=

∫
V(t)

[
Dvh

Dvt
+ (∇ · v)h

]
dV. (1.34)

Then substituting (1.33) into (1.34) yields

DvH

Dvt
=

∫
V(t)

∇ ·
[(

Π + Ψ +
u2

2
− u · v

)
ω

]
dV, (1.35)

From the divergence theorem, we have

DvH

Dvt
=

∫
S(t)

[(
Π + Ψ +

u2

2
− u · v

)
ω

]
· ndS = 0, (1.36)

where n denotes the surface normal and the boundary S(t) of V(t) is a vortex surface
with ω · n = 0.


