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This supplementary document presents the results of full two-dimensional numerical
simulations and compares them to the predictions of the quasi-one-dimensional (Q1D)
model defined by (2.9) and (2.11) in the paper. The aim is to provide a demonstration
of the accuracy of the Q1D model for general planform aspect ratios (spanning the
full range of wide to narrow channel geometries), thereby testing the robustness of the
heuristic lateral drag approximation (2.11).

1 Two-dimensional equations

Consider a marine ice sheet flowing in a parallel-walled channel of uniform width 2w.
The two-dimensional thin film equations describing the flow are

∇ · [µH(e+ (∇ · u)I)]− τb(u)û = ρgH∇h, (1)

∂H

∂t
+∇ · (Hu) = f(x, t), (2)

where τb = µ0|u/λ−|
m (e.g. MacAyeal, 1989). The no-slip condition on the sidewalls is

u = 0 on y = w, (3)

I impose an ice divide at x = xD at which the symmetry condition

u = 0 on x = xD (4)

applies. Along a calving front at x = xC , I impose the stress condition

n̂ · e+ (∇ · u)n̂ = (ρgH/4)n̂ on x = xC , (5)

where n̂ = x̂ is the unit outward horizontal normal to the calving front. I imposed a
distributed input over an interval of length l ≡ x∞ − xD downstream of the ice divide,

f(x, t) =

{

f0 xD ≤ x ≤ x∞,
0 elsewhere.

(6)
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This conditions produces a steady-state input flux of Q = 2wlf0 for x > x∞. This
corresponds to the same input condition downstream of x∞ as assumed in the numerical
examples of the paper.

1.1 Dimensionless equations

Non-dimensionalisation using the intrinsic thickness and length scales, H and L, defined
by (2.20a, b) in the paper yields the following dimensionless system of equations

∇ · [µH(e+ (∇ · u)I)]− τb(u)û = H∇h, (7)

∂H

∂t
+∇ · (Hu) = F (x, t), (8)

where τb = |u|m. The no-slip conditions at the ice divide and the lateral margins are

u = 0 on x = XD, (9)

u = 0 on y = W ≡ (C/S)n/(n+1), (10)

where XD ≡ xD/L and W ≡ w/L, and C ≡ 2[1 + (n/2)]1/n is a constant equal to
C ≈ 2.115 for n = 3. The dynamic boundary condition (5) is

n̂ · e+ (∇ · u)n̂ = (δH/4)n̂ on x = XC , (11)

where XC ≡ xC/L. The accumulation condition (6) is

F (x, t) =

{

1/(2LW ) xdiv ≤ x ≤ x∞,
0 elsewhere,

(12)

where L ≡ l/L. The dimensionless steady-state flux per unit width arising for x > X∞

is
1

2W

∫ W

−W
Hu dy = 1. (13)

Equations (7)–(12) comprise a coupled hyperbolic–elliptic problem for the two-
dimensional evolution of the thickness H(x, y, t). I solve these equations using the
adaptive finite-element solver Úa developed by G. Hilmar Gudmundsson (Gudmunds-
son et al., 2012; Gudmundsson, 2013). The solver was initialised using the steady-state
solution to the Q1D model, described by (3.1)–(3.2) in the paper, and allowed to relax
towards a steady state. For these examples, I consider the power-law case n = 3, set
the dimensionless calving position as xC = 6000, and assume the negatively-sloped bed
profile

b = −β + αx (14)

where α = −10−3 and β = 6.



Figure 1: Numerical predictions for the dimensionless width-averaged thickness profile
in steady state, H̄(x) (left), and two-dimensional longitudinal velocity field, u(x, y), for
dimensionless channel half widths (a) W = 4000, (b) 1000 and (c) 300 obtained from
numerical solutions of the full two-dimensional equations . The left-hand plots show the
width-averaged surface profiles: the dotted black curves shows the numerical solutions
of the full two-dimensional model (‘2D solution’) obtained using finite-element analysis;
the continuous blue curves show the prediction of the quasi-one-dimensional theory
(’Q1D solution’) given by the solution of (3.1)–(3.2) of the paper. The right-hand plots
show the planform two-dimensional longitudinal velocity field u(x, y) obtained from the
two-dimensional solution. The red curve shows the grounding line in each case.



Figure 2: Numerical solutions for (a) the longitudinal velocity u(x, y), (b) the transverse
velocity v(x, y), and (c) the thickness H(x, y), in steady state for dimensionless channel
half widthW = 1000 obtained from finite-element integration of the full two-dimensional
equations (7)–(12). The grounding line is shown as a red curve in each panel.



2 Results

The steady states thus determined for three dimensionless channel half widths: (a)
W = 4000 (b) 1000 and (c) 300 are shown in figure 1. The corresponding longitudinal
velocity field u(x, y) is shown by the colour plots on the right-hand side. The left-hand
plots show the width-averaged profile of the marine ice sheet, i.e. the surface height

h̄(x) =
1

2W

∫ W

−W
h(x, y) dy. (15)

For each case, the prediction of the two-dimensional equations (7)–(12) is shown by
the dotted black curves. The corresponding prediction of the Q1D given by solving
(3.1)–(3.2) of the paper are shown by solid blue curves. The right-hand panels show
the longitudinal velocity field u(x, y) given by the 2D solution, with the grounding line
shown by the red curve. There is generally excellent agreement across the complete range
of planform aspect ratios. The best absolute agreement occurs for the largest channel
width [case (a)], for which the ice shelf is wider than it is long. Very good agreement
similarly applies to the intermediate case (b), for which the ice shelf produced is 1.2 times
longer than it is wide, and in the narrowest case (c), for which the ice shelf produced is
4 times longer than it is wide. Despite some considerable cross-channel two-dimensional
deformation shown the right-hand panels, the Q1D theory describes the two-dimensional
marine ice sheets accurately across the fully range of planform aspect ratios.

Figure 2 shows the planform longitudinal velocity field u(x, y), transverse velocity
v(x, y) and thickness field H(x, y) for the intermediate example (b). The transverse
velocity v(x, y) becomes relatively larger in the immediate front of the grounding line,
representing a feature of the so-called ‘inlet boundary layer’ discussed in §5.1 of the
paper. There is also a considerable increase in lateral velocity at the corners of the
calving front, which can be interpreted as a corner flow that feeds a hypothetical die
swell downstream of the channel mouth (Pegler, 2016). Another interesting feature
illustrated by the thickness field H(x, y) near the grounding line is that the ice sheet is
thicker towards the margin. This feature is also indicated by the direction of curvature
of the grounding line. Further downstream, however, the flow transitions to becoming
thickest instead along its centreline, with a transition from the grounding line involving
three localised maxima in thickness across the transverse section. Despite these complex
two-dimensional features, the Q1D model satisfactory describes the large-scale dynamics.
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