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Online appendix: Additional analysis and model results

This appendix comprises three main sections. The first provides additional analysis for
our numerical model, the second provides additional results from our analytical model,
and the third summarizes additional simulations we have performed to test the role of
different nondimensional parameters on the flow behavior.

1. Additional analysis for the numerical model

1.1. Verification of the advection-diffusion equation used in the miscible simulations

For the simulations of miscible fluids, we use a finite difference scheme to solve the
advection-diffusion equation (2.21) for concentration. In the spatial discretization, we
use a fifth-order weighted-essentially-non-oscillatory scheme to represent the advection
term and a second-order central-difference scheme for the diffusion term. In the temporal
discretization, we use a third-order, total-variation-diminishing Runge-Kutta scheme.
To verify the accuracy of our strategy, we compare our numerical solution to a one-
dimensional advection-diffusion problem with its analytical solution.

In this benchmark, we solve the equation

∂c(t, x)

∂t
= k

∂2c(t, x)

∂x2
+ v

∂c(t, x)

∂x
,

t > 0 ,

0 < x < 10 ,

(1.1)

where k = 0.5 is the diffusivity and v = 0.5 is the imposed advection speed. We specify
the boundary conditions

c(t, 0) = 0 ,

c(t, 10) = 1 .
(1.2)

The initial conditions are

c(0, x) =

{
0 0 6 x < 10
1 x = 10

. (1.3)

The equation can be solved analytically using separation of variables. The analytical
solution is
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2k )u(t, x) , (1.4)
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(1.5)

and

λn = (
nπ

10
)2 for n = 1, 2, ... (1.6)

We compare the numerical evolution of c to the analytical solution in figure S1 (A),
with a spatial grid of 161 cells and a temporal step of ∆t = 2.4 × 10−4. The numerical
solution reaches a good agreement with the analytical solution. In figure S1 (B), we show
a convergence test for the numerical scheme demonstrating second-order convergence in
space at ∆t = 2.4× 10−4.



2 Suckale et al.

0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

x

c

t

Curve: NUM
Symbol: ANA 1

0
-4

1
0
-3

1
0
-2

10-2 10-1 100

Δx

ER
R

O
R

(A) (B)

Figure S1: (A) Evolution of numerical (curve) and analytical (symbol) c; (B) Convergence of
the error for spatial resolution, second-order accuracy is obtained.

1.2. Convergence test and adaptive grid refinement

In figure S2, we reproduce experiment #5 to evaluate whether the simulation converges
as the spatial (figure S2A) and temporal (figure S2B) resolution are increased. The
computation assumes two miscible fluids with low diffusivity (i.e., D = 10−10m2/s). We
test convergence by comparing the numerical rise speed to the corresponding analytical
solution despite the fact that the analytical solution strictly applies only to two immiscible
fluids. The numerical rise speed is taken along a horizontal cross section in an area of
well-developed flow. Both convergence rates are first order. To increase the accuracy of
the numerical model efficiently, we apply an adaptive grid refinement strategy. In the
simulation of both immiscible and miscible flow, our grid hierarchy comprises two levels.
Level 1 is a fixed, coarse grid that defines the whole computational domain. Level 2 is
an adaptively generated, fine grid that overlays the coarse level. The fine grid covers
the whole liquid-liquid interface to accurately simulate the evolution of flow regimes. As
the bidirectional flow develops and the interface extends through the domain, the area
covered by the fine grid is increased as well. Compared to a simulation using the finer grid
resolution over the entire computational domain, this adaptive grid refinement strategy
obtains the same high accuracy, but saves more than 50% of the computational expense.
More details of our adaptive grid refinement strategy are discussed in Qin & Suckale
(2017).

1.3. Comparison of the average rise speed to the frontal rise speed

In their analogue experiments, Stevenson & Blake (1998) calculated the Ps number
using the frontal rise speed of the ascending liquid. Our analytical model assumes that
core-annular flow is at steady state, which is not compatible with a propagating front.
To compute Ps with our analytical model, we use the average rise speed, which we
define as the average of the vertical velocity component in the lateral direction across
the ascending liquid in the core, and use the experimental Ps numbers to estimate the
core radius. Figure S3 compares the two velocity measures for experiment #8. Figure
S3(B) shows that both frontal rise speed and average rise velocity reach a similar steady
state after an initial spin-up. We also compare the two rise-speed estimates for other
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Figure S2: Convergence tests for the relative L2 error of numerical rise speed. Convergence of
the relative error is first order for both spatial (A) and temporal (B) resolution.

experiments and find that the difference is always small (< 5%) and will decrease with
spatial and temporal resolution.

1.4. Comparison of the linear dependence of viscosity on concentration to a potential
nonlinear dependence

Several numerical studies of bidirectional flow in miscible fluids have applied a non-
linear dependence of viscosity on concentration instead of a linear one, which we use in
the present study. For example, Meiburg et al. (2004) defined an exponential relationship
between viscosity and concentration as

µ = µae
ln
µd
µa
c . (1.7)

In figure S4, we compare a simulation with a linear viscosity profile to one with an
exponential viscosity profile for experiment #5. In both simulations, we use a linear
density profile. We find that the exponential viscosity profile is associated with a notably
different speed profile (S4C) as compared to the linear case. The exponential viscosity
profile entails an increased downward velocity in the buoyant fluid close to the fluid-fluid
interface. Because the density profile is linear, the buoyancy force changes linearly across
the interface, whereas the viscous resistance changes exponentially (figure S4D). This
means that there is a thin boundary layer of relatively heavy fluid that has relatively low
viscosity and is therefore actively sinking, as indicated by the downward-oriented peak
in the speed apparent in figure S4C.

2. Additional results from the analytical model

2.1. 2D formulation

The analytical model for a general tube geometry in 3D, described in detail in the main
article, can also be formulated in 2D. We use the 2D formulation of the analytical model
to compute influx and outflux boundary conditions for our 2D numerical simulations
(e.g., figure 11 in the main article). In the 2D case, the nondimensional vertical speed in
the two fluids is

ud(y) =
P

2

(
y2 − 1

)
− δ cosα(y − 1), y ∈ [δ, 1] (2.1)

ua(y) = M
P − cosα

2

(
y2 − δ2

)
+
P

2

(
δ2 − 1

)
− δ cosα (δ − 1) , y ∈ [0, δ] , (2.2)

where 0 6 y 6 1 is the Cartesian direction perpendicular to the side boundaries and δ is
the half-thickness of the ascending fluid. We will later use these expressions as boundary
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Figure S3: Illustration of two numerical metrics for the rise speed in our virtual reproduction
of experiment #8. (A) The frontal rise speed, uf , is computed by measuring the distance that
the front of the ascending liquid has covered in a given time interval; the average rise speed,
ūa is defined by averaging the vertical velocity of the ascending liquid along a horizontal cross
section taken in an area of fully developed bidirectional flow. (B) Both uf and ūa reach similar
steady-state values soon after an initial spin-up period.

conditions to force bidirectional flow in our 2D numerical model (e.g., figure 11 in the
main article). Similarly to the 3D case in the main article, the expression for the driving
force, P , and the Transport number, Te, are,

P (δ, α,M) = δ
3 + δ2(2M− 3)

2 + 2δ3(M− 1)
cosα , (2.3)

Te(δ, α,M) =
P

6

(
−δ3 + 3δ − 2

)
− δ cosα

2

(
−δ2 + 2δ − 1

)
. (2.4)

2.2. Viscous dissipation for fully developed laminar concentric core-annular flow

We compute the dimensionless viscous dissipation for fully developed, laminar, and
concentric core-annular flow by integrating the local viscous dissipation rate over the
cross-sectional area of the conduit, yielding

Φ =

∫ 1

δ

2πr

(
dud
dr

)2

dr +
1

M

∫ δ

0

2πr

(
dua
dr

)2

dr =
Te

cosα
, (2.5)

where ud and ua are the velocity profiles of the descending and ascending phase (2.8a and
2.8b), respectively, and the expression for the Transport number Te is given in (2.14). The
viscous dissipation is proportional to the dimensionless flux and, in the case of vertical
core-annular flow (cosα = 1), we get Φ = Te.
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Figure S4: Reproduction of experiment #5 using the linear (A) and exponential (B) dependence
of viscosity on concentration. C: Comparison of the numerical velocity profiles between linear
(yellow curve) and exponential (red curve) cases on the cross sections represented by the red
line in plots A and B. D: Relative density (blue curve) and viscosity (black curve) profiles of the
exponential case on the cross section.

2.3. Estimation of the interfacial speed at different viscosity contrasts

The direction of motion of the interface determines the phase in which flow reversal
occurs. As is evident from our analytical model, the sign of ui depends sensitively on
the driving force, which in turn depends on the viscosity contrast. Figure S5 shows
the dependence of the dimensionless interfacial speed ui on the core radius, δ, and the
viscosity contrast, M. Negative interface speeds are associated with flow reversal in the
ascending fluid, and positive interface speeds lead to flow reversal in the descending
fluid. When the viscosity of the descending phase is significantly higher than that of
the ascending core (M > 10), flow reversal occurs in the ascending phase across almost
the whole range of δ, except for extremely low core radii that are likely dynamically
unstable. Conversely, as M decreases, flow reversal begins to shift into the descending
phase over a growing range of core radii. If, however, the viscosity ratio is reversed from
the experimental setup in Stevenson & Blake (1998), that is if the buoyant fluid is now
more viscous than the descending fluid, flow reversal occurs in the descending phase
across the entire range of δ.

3. Analysis of the nondimensional regimes and their relevance for the
flow behavior

3.1. Overview of all relevant nondimensional parameters for the reproduced laboratory
experiments and additional simulations

The consideration of both miscible and immiscible fluids at finite and zero Reynolds
number implies that there are many relevant, nondimensional parameters, including the
Reynolds number, Froude number, Bond number, Péclet number, viscosity contrast, and
aspect ratio of the domain. In this section, we provide a list of the nondimensional
numbers characterizing both the laboratory experiments and our numerical simulations in
table S1. We emphasize that the goal of this section is not to map out the nondimensional
parameter space fully, but instead to clearly quantify the nondimensional space explored.

As os evident from table S1, all experiments and simulations are at zero or very low
Reynolds number. The emphasis on this regime derives from our goal of understanding
volcanic systems, which are characterized by very high fluid viscosities. Consistent with
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Table S1: Summary of nondimensional parameters for all simulations, including the laboratory
experiment they are based on, miscibility behavior, initial condition (cos or sin fluctuation),
density contrast (higher value (H), lower value (L), or the same value as the analogue experiments
(O)), Reynolds number (Re), Froude number (Fr), Bond number (Bo), Péclet number (Pe),
diffusion coefficient (D), surface tension (σ), the number of the corresponding figures

Case Fluids, Initial cond, ∆ρ Re Fr Bo Pe Figures

# misc/imm, cos/sin, H/L/O ∆ρuR
µd

u2

gR
∆ρgR2

σ
Ru
D

#

#1 misc. (D=10−10,cos,O) 6.0×10−8 3.6×10−9 - 8.4×102 3,S6
#1 misc. (D=10−10,sin,O) 6.0×10−8 3.6×10−9 - 8.4×102 S6
#2 misc. (D=10−10,cos,O) 1.3×10−7 4.0×10−9 - 5.0×102 3
#3 misc. (D=10−10,cos,O) 6.0×10−5 3.4×10−7 - 4.6×103 3
#4 misc. (D=10−10,cos,O) 1.0×10−5 1.6×10−7 - 3.2×103 3
#5 misc. (D=10−10,cos,O) 3.3×10−4 9.4×10−6 - 2.4×104 3,11,S6,S8
#5 misc. (D=10−8,cos,O) 3.2×10−4 9.0×10−6 - 2.3×102 S8
#5 misc. (D=10−7,cos,O) 1.7×10−4 2.3×10−6 - 1.2×101 S8
#5 misc. (D=10−6,cos,O) NA NA - NA S8
#5 misc. (D=10−10,sin,O) 3.3×10−4 9.4×10−6 - 2.4×104 S6
#6 misc. (D=10−10,cos,O) 7.8×10−8 2.1×10−9 - 3.6×102 3
#7 misc. (D=10−10,cos,O) 1.4×10−5 4.4×10−7 - 1.3×104 3
#8 misc. (D=10−10,cos,O) 1.7×10−5 5.3×10−7 - 1.4×104 3,4,5,7,S7
#8 misc. (D=10−10,cos,L) 4.3×10−6 1.4×10−7 - 7.2×105 S7
#8 imm. (σ=0mN/m,cos,O) 1.8×10−5 5.3×10−7 ∞ - 4,5,S7
#8 imm. (σ=5mN/m,cos,O) 1.8×10−5 5.3×10−7 43 - S7
#9 misc. (D=10−10,cos,H) 5.1×10−6 1.3×10−7 - 1.5×104 S7
#9 misc. (D=10−10,cos,O) 1.1×10−6 3.5×10−8 - 3.6×103 3,4,7,S7
#9 imm. (σ=0mN/m,cos,O) 1.1×10−6 3.5×10−8 ∞ - 4,S7
#9 imm. (σ=5mN/m,cos,O) 1.1×10−6 3.5×10−8 17 - S7
#10 misc. (D=10−10,cos,H) 6.9×10−4 1.2×10−5 - 7.1×104 S7
#10 misc. (D=10−10,cos,O) 1.9×10−4 3.1×10−6 - 3.4×104 3,4,7,S6,S7,S8
#10 misc. (D=10−8,cos,O) 1.5×10−4 2.5×10−6 - 2.6×102 S8
#10 misc. (D=10−7,cos,O) 9.0×10−5 8.0×10−7 - 1.7×101 S8
#10 misc. (D=10−6,cos,O) NA NA - NA S7
#10 misc. (D=10−10,sin,O) 1.9×10−4 3.1×10−6 - 3.4×104 S6
#10 imm. (σ=0mN/m,cos,O) 1.9×10−4 3.1×10−6 ∞ - 4,S7
#10 imm. (σ=5mN/m,cos,O) 1.9×10−4 3.1×10−6 13 - S7
#11 misc. (D=10−10,cos,O) 3.0×10−5 4.8×10−7 - 5.5×103 3

that assumption is the small Froude number, which represents the ratio of inertial
to gravitational forces. The Bond number quantifies the deformability of the fluid-
fluid interface and applies only to immiscible fluids. It is defined as the ratio of the
buoyancy force to the surface tension force. Because the interfaces in the experiments
and simulations are highly deformable, both nondimensional numbers tend to be high
and infinite at zero surface tension. Finally, the Péclet number captures the relative
importance of advection to diffusion and applies only in the miscible regime.

3.2. Impact of the numerical initial condition on the bidirectional flow

Significant effort in the analysis of bidirectional flow has been devoted to linearized
stability analysis and the identification of the fastest-growing wavelengths, in both the
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Figure S5: The dimensionless interfacial velocity for the core-annular flow configuration as a
function of the core radius δ and the viscosity ratio M. Negative ui implies flow reversal in the
ascending (core) phase and positive ui implies flow reversal in the descending phase.

immiscible (e.g., Joseph & Renardy 1992) and miscible cases (e.g., Vanaparthy et al.
2003). To evaluate whether the nature of the initial perturbation we assume has an effect
on the long-term evolution of the flow, we reproduce the analogue experiments with
two kinds of perturbations applied to the interface between the two liquids, a sine and
a cosine function. The flow regimes at three different viscosity contrasts are shown in
figure S6. At high viscosity contrast (experiment #5), steady core-annular flow forms
from both initial perturbations. The descending annulus phase, however, is asymmetric
when using a sine function initially (A2), in the sense that one side stretches further
down than the other, whereas a cosine initial condition leads to a symmetric flow (A3).
The degree of asymmetry depends on the magnitude of the initial perturbation. At
intermediate viscosity contrast (experiment #1), the simulations with both sine (plot
B2) and cosine (plot B3) initial perturbations produce a similar flow regime, where the
ascending liquid rises in the center of the tube and the descending liquid breaks into
small blobs. At low viscosity contrast (experiment #10), the ascending and descending
liquid is approximately symmetric for both initial conditions (figures S6C2-3). According
to these results, the shape of the initial perturbation does not determine the flow regime,
and will have only a minor effect on the flow symmetry. We also find that the simulations
result in similar Ps number independent of their initial perturbation, even though the
sine perturbation minimally shortens the time until steady state is reached (see figure
S6). Due to the negligible effect of the initial perturbation on the model outcomes, we
present only numerical simulations with a cosine initial condition in the main article.

3.3. Impact of varying only the density contrast as compared to varying both the density
and viscosity

In the analogue experiments of Stevenson & Blake (1998), the density and viscosity
ratio vary jointly for each experiment, which makes it difficult to assess the effect of
varying only density or only viscosity. In figures S7A1-2, B1-2, and C1-2, we use our
numerical model to evaluate the impact of density contrast on miscible flow. In the pairs
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Figure S6: Direct numerical simulations of the three primary flow regimes observed in
bidirectional pipe flow for different viscosity contrasts with sine initial perturbation (A2, B2, C2)
and cosine initial perturbation (A3, B3, C3) in comparison to sketches (A1, B1, C1) reproduced
from the analogue experiments of Stevenson & Blake (1998). All simulation snapshots are taken
at t = 200×t0.

of A1 and A2, B1 and B2, and C1 and C2, we apply the same viscosity ratio but different
density contrasts. The density contrasts of A1, B1, and C1 are twice of A2, B2, and C2.
We find that density contrast does not change the flow regime, but that higher density
contrast results in higher ascending and descending speeds. This finding is not surprising
in light of the fact that the Reynolds number remains very small despite the increase in
density contrast. Given the high viscosities, an unreasonably high density contrast would
be needed to shift into an inertial flow regime, where the behavior might be different
than that shown in figure S7.

3.4. Analysis of the role of surface tension forces on the stability of bidirectional flow

We evaluate the impact of surface tension forces in the immiscible flow regime by
comparing the flow patterns with zero surface tension (figures S7A3, B3 and C3) to the
those with 5 mN/m surface tension (S7A4, B4 and C4). Because the surface tension does
not alter the flow regimes, it suppresses interface instabilities, particularly at intermediate
viscosity contrast, as is evident from a smoother interface in figure S7B4 as compared to
B3. It also changes the morphology of the interface where it is in contact with the wall
from flat to blob-like (e.g., see figure S7A4 as compared to A3). This finding is consistent
with the theoretical result that surface tension tends to stabilize core-annular flow (e.g.,
Hickox 1971).

3.5. Relative importance of advection and diffusion

In the manuscript (see figure 5), we compare a miscible and an immiscible simula-
tions and conclude that miscibility does not fundamentally alter the three flow regimes
observed of Stevenson & Blake (1998). Evidently, this conclusion holds true only as
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Figure S7: Direct numerical simulations of the three primary flow regimes observed in
bidirectional pipe flow for different viscosity contrast. Plots A1-2 (experiment #8), B1-2
(experiment #9), and C1-2 (experiment #10) represent the miscible flow and the density
contrasts of A1, B1, and C1 are twice of those of A2, B2, and C2. Plots A3-4 (experiment
#8), B3-4 (experiment #9), and C3-4 (experiment #10) represent the immiscible flow. The
surface tensions of A3, B3, and C3 are zero, while the surface tensions of A4, B4, and C4 are 5
mN/m. All simulation snapshots are taken at t = 200×t0.

long as advection dominates diffusive processes, or equivalently, if the Péclet number is
large enough. As figure S8 demonstrates, we gradually increase the diffusion coefficient,
D, to identify the nondimensional regime over which the immiscible flow regimes are
maintained in the immiscible context.

Advection dominates the flow regime if the diffusion coefficient is smaller than about
10−8m2/s, or Pe > 102 (see figures S8A1-2 and S8B1-2). In that case, the flow regimes
are similar to those observed in the laboratory experiments. As the diffusion coefficient
increases, the interface becomes more and more diffuse (e.g., figures S8A3 and B3). At
very high diffusivities, D > 10−7m2/s, or Pe ≈ 10 (see figures S8A4 and B4), the flow is
no longer bidirectional but entirely diffusive.
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Figure S8: Comparison of the flow regimes with different diffusion coefficients, D. A1-3 are the
reproductions of experiment #5, whereas B1-3 are the reproduction of experiment #10. A1 and
B1 use D = 10−10m2/s; A2 and B2 use D = 10−8m2/s; A3 and B3 use D = 10−7m2/s; A4 and
B4 use D = 10−6m2/s. All simulation snapshots are taken at t = 200×t0.


