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Appendix A. Analytical approximations of self-similar solutions

Solutions computed in §3 with the numerical method of Boudesocque-Dubois et al.
(2013) may be compared with approximate analytical solutions derived under particular
assumptions.

A.1. Shock wave approximation

Upon considering the reduced system of equations (3.5) in the absence of heat conduc-
tion, analytical approximations of self-similar shock waves for boundary pressures (3.7a)
can be obtained under the form of perturbation expansions. In the case of the (Bp,Bϕ)-
formulation (§2.2.1), these expansions yield, at leading order, the approximations
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valid for 0 < ξ̃ 6 1, where ξ̃ = ξ/ξsf, b = 2(α − 1)/αγ, η = (γ + 1)/2α2, and Gd,
Vd, Θd are the downstream shock front values (3.8). A rather good agreement, for such
approximations at leading order, with computed solutions at small heat fluxes is found
over the flow compressed regions: see figure 14.
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Figure 14. Comparion of the shock wave approximations (·········), given by (A 1), with the vanishing
conduction region flow (------------------) of figure 5 (profiles with the smallest spatial extent). Spatial profiles
in the reduced coordinate X of the flow reduced (a) density, (b) velocity, (c) temperature, and
(d) pressure, normalized by their downstream shock front values.

A.2. Conduction region approximation

Perturbation expansions of the solutions to the full system of reduced equations (3.5),
for µ = 2, with boundary conditions (3.7) give the leading order approximations

CG(ξ̃) = G(0)
(
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)−1/(ν+2)
, (A 2a)
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CΘ(ξ̃) = Θ(0)
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, (A 2c)

valid for 0 6 ξ̃ < 1, with ξ̃ = ξ/ξa and ξa = B−1p B−1ϕ Θ(0)
ν+2

/(ν + 2). This latter
parameter which corresponds to a singularity of the density function (A 2a) and a zero
of the temperature function (A 2c), can be considered as the approximate location of the
ablation front. These approximate solutions result from a uniform pressure approximation
of the flow conduction regions and are best verified for flows presenting expansion waves
with significant quasi-isobaric portions (figure 15).
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Figure 15. Comparion of the conduction region approximations (·········) deduced from (A 2) with
a stiff ablation flow (------------------) presenting a nearly isobaric portion of its conduction region. Spatial
profiles in the reduced coordinate X of the flow reduced (a) density, (b) velocity, (c) temperature,
and (d) pressure, normalized by their downstream shock front values.

Appendix B. Quantitative hydrodynamic analysis

B.1. Ablative wave spatial structure

Solutions of the chart (Bϕ,Bp) may display spatial variations of very different steepness
as illustrated in figures 5–7, by profiles of the flow-variable reduced functions vs the
reduced coordinate X for some of the flows identified in the chart of figure 3. Such
profiles are homothetic to the actual profiles in physical space (coordinate x) of the flow
physical variables: reduced abscissas and ordinates only need to be multiplied by the
products of the proper variable scale of table 1(a) and the relevant power of t given by
(3.2) and table 7.

All of the flow solutions are characterized by density and velocity absolute maxima as
well as a temperature absolute minimum located in the upstream vicinity of the ablation
front. (Here and throughout the rest of the paper, upstream and downstream are defined
relatively to the flow passing through the leading shock-wave front.) The accelerated
shock wave is sustained by a compression wave extending downstream to the shock front
all the way to the density maximum, i.e. spanning almost entirely the compressed fluid
region, with characteristic profiles of increasing density, velocity and pressure across
the wave (figures 5–7a, b, d). Temperature (figures 5–7c) and entropy (figures 16–18b)
are however decreasing across this wave as a consequence of the increasing production of
entropy at the accelerating shock front and diffusion of heat from the shock front towards
the ablation front (see figures 16–18a in which cusps, characterizing vanishing heat flux
values, mark the boundaries between left regions of inward, ϕx > 0, and right regions of
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Figure 16. Reduced function profiles in the reduced coordinate X of solutions obtained with
the (Bp,Bϕ)-formulation — solution sample ξsf = 1.5 (symbols ∗ in figure 3). Flow (a)
reduced absolute heat flux |Φ|, (b) reduced specific-entropy exponential P/Gγ (see table 7),
(c) Mach number M

(
V ′, Cs

)
, (d) Péclet number Pe

(
V ′, L∇T , G

−µ−1Θν
)
, (e) stratification

number Sr
(
L∇p,H(CT , Aaf)

)
, (f ) and Froude number Fr

(
V ′, L∇v′x , Aaf

)
. Corresponding profiles

of the flow reduced density, velocity, temperature and pressure are given in figure 5.

outward, ϕx < 0, diffusion of heat). In the conduction region, the temperature (figures 5–
7c) and heat flux (see figures 16–18a) are both increasing whereas the density and velocity
(figures 5–7a, b) decrease as the distance to the external boundary diminishes. Quite
differently, depending on the external boundary pressure level, pressure profiles may
either be increasing (cf. the flow with Xsf = 2 in figure 6d), either comprise a maximum
in the upstream vicinity of the ablation front followed by a minimum further downstream
(cf. the flows with Xsf 6 1.5 in figure 6d), either exhibit a single maximum upstream
to the front (case of figure 7d). In all the cases, the heated fluid expansion is neither
isothermal (figures 5–7c) nor isentropic (figures 16–18b).
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Figure 17. Reduced function profiles in the reduced coordinate X of solutions obtained with
the (Bp,Bϕ)-formulation — solution sample ξf/ξsf = 0.4 (symbols ◦ in figure 3). Conventions
identical to those of figure 16. Corresponding profiles of the flow reduced density, velocity,
temperature and pressure are given in figure 6.

This wide variety of flow profiles is quantitatively transcribed into the values of the
relative characteristic lengths of the conduction region, Lcond/Ltot (figures 19a, b), and
of the ablation front, LT /Ltot (figures 19c, d). The former appears to be essentially
— flows with vanishing conduction regions being set aside — an increasing function
of the Péclet scale Pe (figure 19b), or equivalently of the ratio Bϕ/Bp (cf. table 2),
ranging from 0% to over 90%. Hence the extent and, consequently, the expansion of
the conduction region are mainly controlled by the relative magnitude of the external
boundary heat flux with respect to the external boundary pressure. Flows with the largest
conduction regions are found in the region of heat-conduction dominated flows as defined
by criterion vpw(t)/vtw(t) < 1 with (3.11): cf. figure 4. These characteristic features —
extent and expansion — of the conduction region, and therefore of the complementary
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Figure 18. Reduced function profiles in the reduced coordinate X of solutions obtained with
the (Bp,Bϕ)-formulation — IPI-like solution (symbol � in figure 3). Conventions identical to
those of figure 16. Corresponding profiles of the flow reduced density, velocity, temperature and
pressure are given in figure 7.

compressed fluid region, are ruling parameters of the transmission of flow perturbations
between the external surface, the ablation layer and the leading shock-wave front. As
such, their role are influential in the dynamics of the flow perturbations, especially at
large perturbation (relative) wavelengths (e.g. see Goncharov et al. 2000; Clarisse et al.
2016).

The ablation-front scale length, LT , is another determining parameter of the flow
hydrodynamic stability properties. Corresponding to the smallest diffusion length-scale
of the flow, LT is indicative of the perturbation wavelength below which any perturbation
within the conduction region and the ablation layer would be, in principle, smoothed
out, thus determining a wavelength lower bound of the flow-perturbation amplification
spectrum. The relative magnitude of the ablation-front scale length, LT /Ltot, measuring
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Figure 19. Conduction-zone relative length Lcond/Ltot and flow stiffness LT /Ltot for the
solutions of figures 3, 4. Solutions are represented by a colored dot (IPI-like solution ���) in
both (a, c) the plane (Bϕ,Bp) and (b, d) the plane (M2,Pe), according to the color scales
given by the full ranges, in logarithmic scales, of: (a, b) the conduction-zone relative length,
0 6 Lcond/Ltot 6 0.96; (c, d) the flow stiffness, 5 10−11 6 LT /Ltot 6 6.6.

the ablation front stiffness, evolves as a function, mainly, of the ratio Pe/M2 ∝ Bp
(figure 19d) and, moderately, of the boundary heat flux parameter Bϕ (figure 19c). Flows
with the highest ablation front stiffnesses (LT /Ltot as low as 10−10) correspond to the
smallest boundary pressures that have been handled so far with the present numerical
method of solution, and comprise the IPI-like flow solution. Assessing the hydrodynamic
stability of such flows would imply sampling the perturbation wavelength spectrum
over many decades. These high stiffness values are a consequence of the radiation heat
conduction approximation of radiation transport. Less simplistic treatments of actual
radiative ablation would lead, for comparable boundary pressure and radiative flux levels,
to lower stiffnesses. At the other end of the ablation-front stiffness range (LT /Ltot & 1)
are flows driven by the highest dimensionless boundary pressures Bp (figures 19c, d). For
such flows, perturbation damping by heat-conduction is expected to be effective up to
large (relative) values of the perturbation wavelength.
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B.2. Hydrodynamic characteristic numbers

The analysis of the hydrodynamic properties of the present ablative flows relies on the
equations of motion (2.1) written in the reference frame of the ablation front with the
help of the Cartesian coordinate x, viz

Dρ

Dt
+ ρ

∂v′x
∂x

= 0, (B 1a)

ρ
Dv′x
Dt

+
∂p

∂x
+ ρ aaf = 0, (B 1b)

ρ
D

Dt

(
1

2
v′x

2
+ CvT

)
+

∂

∂x
(pv′x + ϕx) + ρ aaf v

′
x = 0, (B 1c)

with the notation
D.

Dt
=
∂.

∂t
+ v′x

∂.

∂x
, (B 2)

for the material derivative, v′x(x, t) = vx(x, t) − dxaf(t)/dt for the fluid velocity relative
to the front, and aaf for the front acceleration.

The local properties of the flows are then assessed by comparing, at any given flow
location:
• Inertia forces with pressure forces in (B 1b), through the ratio∣∣∣∣ρ v′x ∂v′x/∂x∂p/∂x

∣∣∣∣ = γM 2(v′x, cs), (B 3)

where M (v′x, cs) is the isentropic Mach number with respect to the ablation front (cf.
table 8a for notations)
• The work of pressure forces, p v′x, with the heat flux, ϕx, in the energy equa-

tion (B 1c), by means of the ratio∣∣∣∣p v′xϕx
∣∣∣∣ =

`∇T |v′x|
κ/ρR

= Pe(v′x, `∇T , κ/ρR), (B 4)

thus defining a Péclet number based on the local temperature-gradient length `∇T .
• Pressure forces vs acceleration forces in the momentum equation (B 1b), through the

ratio ∣∣∣∣ 1

ρ aaf

∂p

∂x

∣∣∣∣ =
{
`∇p
/(
p/ρ |aaf|

)}−1
=

1

Sr
(
`∇p,H(cT , aaf)

) , (B 5)

which amounts to the inverse of a stratification number, Sr , defined in terms of the local
pressure-gradient length `∇p.
• Convective vs acceleration effects in (B 1b), through the ratio∣∣∣∣ 1

aaf
v′x
∂v′x
∂x

∣∣∣∣ = Fr2(v′x, `∇v′x , aaf), (B 6)

which defines a Froude number based on the local velocity-gradient length `∇v′x .
Such definitions of Péclet, stratification and Froude numbers which rely on distinct local
gradient lengths (table 8), are required for accurately rendering the flow actual properties.
Analysis of these numbers for the present set of ablative flows (§3) has been conducted
within the two classifications of self-similar solutions provided by the charts (Bϕ,Bp) and
(M,Pe) with the help of the corresponding reduced expressions (table 8b): cf. figures 20–
23. General features common to all flows, flow region specific properties as well as an
identification of the hydrodynamic regimes that the present ablative waves may belong
to, come out from this analysis.
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(a)
Number Mach Péclet Stratification Froude

Function M (v, c) =
|v|
c

Pe(v, `, χ) =
` |v|
χ

Sr(`,H) =
`

H
, Fr(v, `, g) =

|v|√
|g| `

with H(c, g) =
c2

|g|
(b)

Number Type of analysis Definition Reduced expression

Mach local/LM M (v′x, cs) M (V ′, Cs)

Péclet local Pe(v′x, `∇T , κ/ρR) Pe
(
V ′, L∇T , G

−µ−1Θν
)

LM Pe(v′x, `∇T , κ/Cp ρ) Pe
(
V ′, L∇T , (γ − 1)G−µ−1Θν/γ

)
Stratification local Sr

(
`∇p,H(cT , aaf)

)
Sr
(
L∇p,H(CT , Aaf)

)
LM Sr

(
`∇v′x ,H(cT , aaf)

)
Sr
(
L∇v′x ,H(CT , Aaf)

)
Froude local/LM Fr(v′x, `∇v′x , aaf) Fr

(
V ′, L∇v′x , Aaf

)
Table 8. (a) Function notations and (b) definitions of hydrodynamic characteristic numbers
used for the local flow analysis (§B.2) and LM-approximation analysis (§B.3) with corresponding
reduced expressions for the self-similar solutions of §3 in the (Bp,Bϕ)-formulation (§2.2.1).
Additional notations and definitions are those of table 7.

Values of the Mach number M (V ′, Cs) are characterized by an absolute minimum
reached in the vicinity of the ablation front and local maxima at the shock front and
within the conduction region (figures 16–18c). For all flows, singular values of the Péclet
number Pe

(
V ′, L∇T , G

−µ−1Θν
)

arise at the temperature minimum coinciding with the
upstream edge of the ablation layer (figures 16–18d). Singular values of the stratification
number Sr

(
L∇p,H(CT , Aaf)

)
also occur for flows with vanishing pressure gradients

(figures 16–18e), possibly inducing extreme variations of this number in the ablation
layer and further downstream. The Froude number Fr

(
V ′, L∇v′x , Aaf

)
spans its full range

across the expansion wave, from Fr = 0 — at both the fluid external boundary and the
fluid-velocity maximum upstream to the ablation front — to its maximum reached about
the ablation front (figures 16–18f ).

Conduction region. As expected in a region where heat conduction is important,
values of the Péclet number are smaller than one, confirming the dominance “diffusion >
convection”. However this dominance is limited since Pe > 0.3 for the vast majority of the
sampled flows (figure 20a, b) — exceptions made of flows with vanishing heat conduction
regions for which Pe → 0 — indicating that the work of pressure forces cannot be
neglected in front of the energy flux. The expansion flow of the heated fluid ranges from
being entirely subsonic (figures 16, 17c) to being partially supersonic (figure 18c). The
latter case corresponds to ablative waves with the highest Mach values (figures 21a, b)
which are such that Pe > 102 (figure 21b) and which are identified as being dominantly
driven by heat conduction, according to the criterion vpw(t)/vtw(t) < 1 given by (3.11): cf.
figure 4. Such ablative waves present an isentropic Chapman–Jouguet (CJ) point in their
conduction region — i.e. M

(
V ′, Cs

)
(ξcj) = 1, 0 < ξcj < ξaf — delimitating a subregion

0 6 ξ < ξcj where acoustic waves cannot propagate towards the ablation front. The actual
subregion of supersonic expansion extends in fact further upstream to this CJ point since
the speed of pressure waves is smaller than the isentropic sound velocity in this part of the
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flow. Ablative waves presenting isentropic CJ points include the IPI-like flow of figure 3
(figures 21a, b) and flows with vanishing external boundary pressures (e.g. Saillard et al.
2010) which are relevant to ICF. The balance between acceleration and pressure forces
— stratification number (figures 16–18e) — on one hand, and between convection and
acceleration effects — Froude number (figures 16–18f ) — on the other hand, may vary
significantly across the region, pointing out the actual hydrodynamic heterogeneity of the
heated fluid flow. This heterogeneity is especially pronounced, regarding the former, for
flows presenting a pressure minimum within the conduction region (values of Sr above
ten in figures 22a, b) for which Sr may range from Sr � 1 (figures 22c, d) to Sr � 1,
and, with respect to the latter, for flows with maxξ Fr � 1 (figures 17, 18f, and 23a, b).

Ablation layer. The ablation layer, being the boundary between regions of high
(downstream) and low (upstream) heat conduction, is primarily characterized by the
trans-critical transition of the Péclet number (figures 16–18d). With Pe|ξaf ≈ 4. at the
ablation front (figures 20c, d) — except for vanishing conduction-region flows for which
Pe|ξaf → 0 — pressure-force work slightly and constantly dominates heat diffusion in
the front immediate vicinity. Non-negligible compressible effects in the layer — and
therefore throughout the whole ablative waves — are to be expected for flows with
the highest values of Bϕ as γM 2(V ′, Cs)|ξaf takes values in excess of 1/10 up to 1/4
and above (figure 21c). Very subsonic ablation velocities are obtained for solutions with
small values of the Péclet scale Pe (figure 21d) or, almost equivalently, characterized
by small extents of their conduction regions (figure 19b). These solutions agree with
the criterion of hydrodynamically dominated flows vpw(t)/vtw(t) > 1 defined by (3.11):
see figure 4. Ablative waves with sufficiently low (high) values of M have acceleration
effects dominating (respectively, being dominated by) both pressure gradients — Sr > 1
(figures 22e, f ) — and convection — Fr < 1 (figures 23c, d) — in a neighbourhood of
their ablation front. However, the coexistence of local velocity and temperature — plus,
eventually, pressure — extrema, on the upstream side of the layer, with the steepest
gradients of velocity, temperature — respectively, pressure — about the ablation front,
induce extreme spatial variations of the Péclet (figures 16–18d) and Froude numbers
(figures 16–18f ) — respectively, stratification number (figures 16–18e) — across the layer.
Consequently, apart from acceleration-dominated flows — i.e. such that maxξ Fr < 1
(figures 23a, b) — for which the ordering “acceleration > convection” prevails, no clear-
cut hierarchy of physical effects can be drawn over the ablation layer as a whole.

Compressed fluid region. In terms of hydrodynamic characteristic numbers, the
compressed fluid region, away from the ablation layer, consistently appears to be rather
homogeneous in space (figures 16–18). Mach number values if remaining subsonic, vary
significantly (over nearly a decade, cf. figure 16c) as the whole set of flows is spanned.
Values of the Péclet number, while staying characteristic of a low heat conduction, span
an extremely large range as Bp is varied (figures 16f and 20e, f ). On the contrary and
quite remarkably, the stratification and Froude numbers remain consistently within the
same limited ranges (figures 16–18e, f ), 0.5 6 Sr 6 2 and 0.1 < Fr < 0.72, evidencing
that, within the compressed region, pressure and acceleration effects are comparable and
prevail over convective effects. The hierarchy of physical effects remains thus the same,
namely “pressure ≈ acceleration > convection > diffusion”.

Examination of the overall properties exhibited by the self-similar solutions of §3, leads
to the identification of some particular flow regimes that are summarized in table 4:

(i) Ablative waves with supersonic fluid velocities, i.e. such that max M (V ′, Cs) >
1 or, equivalently, presenting an isentropic Chapman–Jouguet point. Corresponding
to a supersonic expansion of part of their conduction region, these flows lie in the
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Figure 20. Péclet number Pe
(
V ′, L∇T , G

−µ−1Θν
)

for the solutions of figures 3, 4. Solutions are

represented by a colored dot in both (a, c, e) the plane (Bϕ,Bp) and (b, d, f ) the plane (M2,Pe),
according to the color scales given by the full ranges of: (a, b) the conduction-region
minimum value, 0 6 Pe

(
V ′, L∇T , G

−µ−1Θν
)
|0 6 1.23; (c, d) the ablation-front value,

0 6 Pe
(
V ′, L∇T , G

−µ−1Θν
)
|ξaf 6 4.23; (e, f ) the logarithm of the minimum value over the

low-heat-diffusion region, 1.8 10−5 6 minξ>ξminT Pe
(
V ′, L∇T , G

−µ−1Θν
)
6 4.8 1010.
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Figure 21. Mach number M
(
V ′, Cs

)
for the solutions of figures 3, 4. Solutions are represented by

a colored dot (IPI-like solution���) in both (a, c) the plane (Bϕ,Bp) and (b, d) the plane (M2,Pe),
according to the color scales given by the full ranges, in logarithmic scales, of: (a, b) the
overall flow maximum value, 0.038 6 maxξM

(
V ′, Cs

)
6 1.34; (c, d) the ablation front value,

0 < M
(
V ′, Cs

)
|ξaf 6 0.44. Flows with an isentropic Chapman–Jouguet point, i.e. for which

maxξM
(
V ′, Cs

)
> 1, are also indicated (×××) in (a, b).

region Pe > 102 of the plane (M2,Pe) (see figure 21b) and are, according to the
criterion vpw(t)/vtw(t) < 1 with (3.11), dominated by heat conduction: cf. figures 3
and 4.

(ii) Ablative waves with sufficiently high ablation velocities, so that compressible
effects within the ablation layer, and therefore throughout the flow, are non-negligible,
i.e. for which γM 2(V ′, Cs) > 0.1. Such flows, identified by M (V ′, Cs)|ξaf > 0.24 in
figures 21(c, d), are obtained for the highest values of the external radiative heat flux.

(iii) Ablative waves for which acceleration dominates convection, i.e. such that
Fr(V ′, L∇v′x , A

e
af) < 1. Obtained for boundary pressures sufficiently high with respect to

the external radiative heat fluxes, in effect for Bp > 4.0B0.29ϕ , these flows lie in the region
vpw(t)/vtw(t) > 1, with (3.11), and are, accordingly, mainly driven by hydrodynamic
effects. Pressure forces may locally dominate acceleration forces in such flows but not to
the point of the latters being negligible: Sr

(
L∇p,H(CT , A

e
af)
)
> 0.1 (figure 22c, d).

(iv) Ablative waves in which the flow through the ablation front sees convection



A hydrodynamic analysis of self-similar radiative ablation flows 13

(a) maxξ6ξaf log Sr
(
L∇p,H(CT , Aaf)

)

Bp

10
−7

10
−5

10
−3

10
−1

10
1

10
−2

10
−1

10
0

10
1

 

 

(c) minξ6ξaf log Sr
(
L∇p,H(CT , Aaf)

)

Bp

10
−7

10
−5

10
−3

10
−1

10
1

10
−2

10
−1

10
0

10
1

(e) log Sr
(
L∇p,H(CT , Aaf)

)∣∣
ξaf

Bp

10
−7

10
−5

10
−3

10
−1

10
1

10
−2

10
−1

10
0

10
1

Bϕ

(b) maxξ6ξaf log Sr
(
L∇p,H(CT , Aaf)

)

Pe

10
−15

10
−9

10
−3

10
3

10
−15

10
−9

10
−3

10
3

 

 

0

1

2

3

4

(d) minξ6ξaf log Sr
(
L∇p,H(CT , Aaf)

)

Pe

10
−15

10
−9

10
−3

10
3

10
−15

10
−9

10
−3

10
3

 

 

−8

−6

−4

−2

0

(f ) log Sr
(
L∇p,H(CT , Aaf)

)∣∣
ξaf

Pe

10
−15

10
−9

10
−3

10
3

10
−15

10
−9

10
−3

10
3

 

 

−8

−6

−4

−2

0

M2

Figure 22. Stratification number Sr
(
L∇p,H(CT , Aaf)

)
for the solutions of figures 3, 4. Solutions

are represented by a colored dot in both (a, c, e) the plane (Bϕ,Bp) and (b, d, f ) the
plane (M2,Pe), according to the color scales given by the full ranges, in logarithmic scales,
of: (a, b) the conduction region maximum value, 0.4 6 maxξ6ξaf Sr

(
L∇p,H(CT , Aaf)

)
6 1.4 104;

(c, d) the conduction region minimum value, 2.6 10−9 6 minξ6ξaf Sr
(
L∇p,H(CT , Aaf)

)
6 1.2;

(e, f ) the ablation-front value, 2.7 10−9 6 Sr
(
L∇p,H(CT , Aaf)

)
|ξaf 6 36.
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Figure 23. Froude number Fr
(
V ′, L∇v′x , Aaf

)
for the solutions of figures 3, 4. Solutions are

represented by a colored dot in both (a, c) the plane (Bϕ,Bp) and (b, d) the plane (M2,Pe),
according to the color scales given by the full ranges, in logarithmic scales, of: (a, b) the overall
flow maximum value, 0.26 6 maxξ Fr

(
V ′, L∇v′x , Aaf

)
6 1.9 104; (c, d) the ablation-front value,

3.3 10−4 6 Fr
(
V ′, L∇v′x , Aaf

)
|ξaf 6 1.9 104.

effects dominating acceleration effects, i.e. with Fr(V ′, L∇v′x , A
e
af)|ξaf > 1. Observed for

irradiations that are sufficiently intense compared to the external boundary pressures,
i.e. for 3.7B0.3ϕ > Bp, the corresponding flows include the fast expansion and fast ablation
flow regimes identified in items (i) and (ii) above.

B.3. Low-Mach-number analysis

The subsonic character of ablation fronts in ICF has been used in numerous instances
whether for the sole purpose of modelling ablative flows (e.g. see, for laser-driven ablation,
the review of Bychkov et al., 2015, and, for x-ray driven ablation, Nozaki & Nishihara,
1980; Saillard et al., 2010), whether with the goal of obtaining simplified mean-flow
equations for a hydrodynamic stability analysis (cf. Bychkov et al. 2015, and references
therein). Among the latters, a significant number of hydrodynamic stability studies have
relied on the ‘isobaric’ model of laser ablation introduced in ICF by Kull & Anisimov
(1986). This isobaric model is in fact nothing else but an application, to laser ablation, of
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the ‘low Mach number (LM) approximation’ originally developed for problems of natural
convection (Paolucci 1982). The widespread use of this model in ICF and its potential
application to hydrodynamic stability analyses of x-ray ablation, call for its evaluation
on the present set of self-similar solutions held as realistic examples of radiative ablation
flows. The foregoing analysis ressembles that perfomed in (Boudesocque-Dubois et al.
2008) for self-similar flows with electron heat conduction (µ, ν) = (0, 5/2) and related
to laser-driven ablation, but differs in the actual definitions of the LM approximation
criteria.

B.3.1. Criteria of the low-Mach-number approximation

The present analysis of the LM approximation for a general ablation flow relies
on the (M ′,Fr ′,Pe ′)-formulation of the equations of motion (§2.2.3) written for the
ablation-front reference frame but in Eulerian form with the help of the dimensionless
cartesian coordinate x̄. The energy equation being reformulated as in (Paolucci 1982),
the corresponding form of (2.25) ensues as

Dρ̄

Dt̄
+ ρ̄

∂v̄′x
∂x̄

= 0, (B 7a)

ρ̄
Dv̄′x
Dt̄

+
1

γM ′2
∂p̄

∂x̄
+

ρ̄

Fr ′2
= 0, (B 7b)

ρ̄
DT̄

Dt̄
− γ − 1

γ

Dp̄

Dt̄
+

1

Pe ′
∂ϕ̄x
∂x̄

= 0, (B 7c)

with: the relevant variant of (B 2) for the material derivative; expressions (2.17), (2.18);
and (2.26) where we have chosen aec = aaf for the acceleration reference value of
table 1(c.ii). Choosing the remaining reference values, ρc, Tc, v

′
c, to be — at first —

the corresponding flow values at the ablation front and `c = `T , the LM approximation
of (B 7) considers expansions of the form (Paolucci 1982)

q̄ = q̄(0) + γM ′2 q̄(1) + o
(
γM ′2), (B 8)

for any fluid variable q, assuming that

γM ′2 � 1. (B 9)

Inserting such expansions into (B 7) yields:
• at the lowest order in γM ′2, the equation

∂p̄(0)

∂x̄
= 0, (B 10)

as obtained from (B 7b), provided that

γM ′2/Fr ′2 � 1 ; (B 11)

• at the following order in γM ′2, the system

Dρ̄(0)

Dt̄
+ ρ̄(0)

∂v̄′
(0)
x

∂x̄
= 0, (B 12a)

ρ̄(0)
Dv̄′

(0)
x

Dt̄
+

1

γM ′2
∂p̄(1)

∂x̄
+
ρ̄(0)

Fr ′2
= 0, (B 12b)

ρ̄(0)
DT̄ (0)

Dt̄
− γ − 1

γ

dp̄(0)

dt̄
+

1

Pe ′
∂ϕ̄

(0)
x

∂x̄
= 0, (B 12c)

along with p̄(0) = ρ̄(0) T̄ (0), ϕ̄
(0)
x = −

(
ρ̄(0)

)−µ (
T̄ (0)

)ν
∂T̄ (0)/∂x̄, as deduced from (B 7)
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under the condition that, in the expansion of (B 7c), the term in γM ′2/Pe ′ is of the
same order as γM ′2, i.e.

γM ′2/Pe ′ � 1 . (B 13)

The LM approximation (B 10), (B 12) is thus bound to the fulfillment of the three re-
quirements — or LM-approximation criteria — (B 9), (B 11), (B 13): cf. Paolucci (1982).
The isobaric model of Kull & Anisimov (1986) corresponds to the steady flow instance
of (B 10), (B 12), yet without the framework of the expansions (B 8). In particular, the
Péclet number criterion (B 13) is absent from the paper of Kull & Anisimov (1986) and
consequently from all the ensuing works relying on this model (e.g. see Bychkov et al.
1994; Goncharov et al. 1996; Clavin & Masse 2004).

For strongly spatially inhomogeneous flows such as some of the ablative waves of §3, the
validity of the LM approximation (B 10), (B 12) must be established over a neighbourhood
of the ablation front, say V, rather than merely at the front itself. The resulting criteria
replacing (B 9), (B 11), (B 13) come then as, with the notations of table 8,

γM 2(v′x, cs)� 1, (B 14a)

γM 2(v′x, cs)

Fr2(v′x, `∇v′x , aaf)
= Sr

(
`∇v′x ,H(cT , aaf)

)
� 1, (B 14b)

γM 2(v′x, cs)

Pe(v′x, `∇T , κ/Cp ρ)
� 1, (B 14c)

for any point of V. These criteria follow from changing the reference values, ρc, Tc,
v′c, in (B 7) to be the flow values at a running point of V, and for (B 14b), from the fact
that (B 10) amounts to having ∂p̄/∂x̄ = O

(
γM 2(v′x, cs)

)
in (B 7b), while (B 14c) proceeds

from noticing that (B 12c) requires that, in (B 7c), the heat flux term (∂ϕ̄x/∂x̄)/Pe ′ is
of the same order as the remaining terms. The above definition (B 14b) of the Froude
criterion is identical to that given in (Kull & Anisimov 1986), but in many instances other
reference lengths, in particular global lengths, have been used (e.g. Bychkov et al. 1994;
Goncharov et al. 1996; Boudesocque-Dubois et al. 2008). In that respect, the above low-
Mach-number analysis presents the advantage of leaving no ambiguity in the definitions
of the required reference lengths.

B.3.2. LM-approximation criteria verification

The usefulness of a LM-approximation for the present set of self-similar ablation flows,
is assessed by evaluating, for each flow, the sizes of the three neighbourhoods of the
ablation front satisfying the following inequalities:

γM 2(v′x, cs) 6 0.1, Sr
(
`∇v′x ,H(cT , aaf)

)
6 0.1,

γM 2(v′x, cs)

Pe(v′x, `∇T , κ/Cp ρ)
6 0.1 .

(B 15a, b, c)
Away from the front, other flow regions may satisfy these inequalities but are discarded.
The region of validity of the LM-approximation is then given by the intersection of these
three neighbourhoods and is evaluated upon comparing the size of each neighbourhood
with that of the ablation wave, `tot (figure 24). None of the present ablative waves
is suitable for a LM-approximation over its entire extent. Instead, flows belonging to
the compressible regimes identified in §B.2 (cf. also table 4) either violate the small
Mach-number criterion (B 15a) in the fast ablation case, either satisfy (B 15a) but
over restricted portions, less than 20%, of their extent in the fast expansion case: see
figures 24(a, b). Other flows, fulfilling criterion (B 15a) over larger extents (M2 / 1 and
Pe / 1, in figure 24b), are constrained by the Froude number criterion (B 15b): ablation-
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Figure 24. Extents of the LM-approximation validity regions for the solutions of figures 3, 4.
Solutions are represented by a colored dot (IPI-like solution���) in both (a, c, e) the plane (Bϕ,Bp)
and (b, d, f ) the plane (M2,Pe). The color scales are set by the full ranges of the relative sizes
with respect to the ablation wave extent `tot, say `LM/`tot, of the ablation front neighbourhoods
satisfying each of the three LM-approximation criteria (B 15), namely: (a, b) for the Mach
number criterion (B 15a), 0 6 `LM/`tot 6 1; (c, d) for the Froude number criterion (B 15b),
0 6 `LM/`tot 6 0.39; (e, f ) for the Péclet number criterion (B 15c), 0 6 `LM/`tot 6 1. Actual
inspection of the criteria (B 15) is performed on the solutions in the (Bp,Bϕ)-formulation with
the help of the reduced expressions deduced from table 7.
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front neighbourhoods satisfying (B 15b) represent less than 40% of the ablative wave
extent when they are not of vanishing sizes (figures 24c, d). In other words, regions of high
flow stratifications are dominant: cf. figure 17(e). The Péclet number criterion (B 15c)
follows roughly the Mach number criterion (compare figures 24a, b and e, f ) and thus
does not impose in most cases additional constraints, except for flows with vanishing
conduction regions (figures 19a, b) for which the Péclet number becomes too small (cf.
§B.2) for (B 15c) to be satisfied in the vicinity of the ablation front.

From these observations, a LM-approximation appears to be of little relevance for
modelling flows taken from the present set of self-similar solutions. This conclusion may
be extended to non self-similar ablation flows on the ground of hydrodynamic similitude.
For example, a LM-approximation is obviously inappropriate for correctly describing the
ablative flows with fast-expanding conduction regions, i.e. such that max M (v′x, cs) > 1,
that are characteristic (e.g. Saillard et al. 2010) of current ICF-pellet implosions driven
by hohlraum-generated x-ray irradiation.

Appendix C. Eigenvalues and eigenvectors of the matrix B0

Eigenvalues, λk, k = 1, 2, 3, of the matrix B0 defined by (4.2b) are computed nu-
merically using Cardano’s formulas (e.g. see Jacobson 2009) for the roots of the cubic
polynomial

P3(µ) = µ3 + p µ+ q, (C 1)

with the expressions

µ = λ− 1

3
q0T , p = −1

3
q0T

2 − γ z0T
2
, q = − 2

27
q0T

3
+
[(

1− γ

3

)
q0T − q0ρ

]
z0T

2
, (C 2)

λ being the eigenvalue unknown. The components lki , i = 1, 2, 3, of the left eigenvector lk

associated to the eigenvalue λk are deduced from the relations

lk2 =
ρ0T 0

z0T
2

(
λk − q0T

)
lk3 , lk1 =

1

ρ02
[
λk l

k
2 − (γ − 1) ρ0T 0 lk3

]
, (C 3)

where lk3 may be freely specified, provided that it is non-zero, or determined from
normalization arguments.

C.1. Analytical approximations

The expressions of the coefficients p and q in (C 2) allow for perturbation expansions
of the analytical formulas for the roots of P3(µ) = 0 in terms of the quantities q0ρ/z

0
T and

q0T /z
0
T , or, alternatively, z0T /q

0
T , taken as small parameters. These expansions, carried out

with Maxima (2010) under the assumption that the discriminant of P3(µ) is negative,
lead to the following results.

Case |q0ρ| � z0T and |q0T | � z0T . Under the assumption |q0ρ| � z0T and |q0T | � z0T , the
following approximations for the eigenvalues of B0 are obtained

λlh1 =
√
γ z0T +

1

2

[
q0T +

1

γ
(q0ρ − q0T )

]
+O

(
q0a q

0
b

/
z0T

2
)
,

λlh2 =
1

γ
(q0T − q0ρ) +O

(
q0a q

0
b q

0
c

/
z0T

3
)
,

λlh3 = −√γ z0T +
1

2

[
q0T +

1

γ
(q0ρ − q0T )

]
+O

(
q0a q

0
b

/
z0T

2
)
,


(C 4)
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where the subscripts a, b, c are any of ρ or T . The resulting approximations for the
associated left eigenvectors, deduced from (C 3) with the choice llhk3 = ρ0, come then as,
respectively,

llh
1
1 = T 0

[
1 +

1
√
γ z0T

(q0ρ − q0T ) +O
(
q0a q

0
b

/
z0T

2
)]
,

llh
1
2 = γM ′2 z0T

[
√
γ +

1

2 γ z0T

[
q0ρ − (γ + 1) q0T

]
+O

(
q0a q

0
b

/
z0T

2
)]
,

 (C 5a)

llh
2
1 = −(γ − 1)T 0 +O

(
q0a q

0
b

/
z0T

2
)
,

llh
2
2 = −M ′2 [q0ρ + (γ − 1) q0T

]
+O

(
q0a q

0
b

/
z0T

2
)
,

 (C 5b)

llh
3
1 = T 0

[
1− 1
√
γ z0T

(q0ρ − q0T ) +O
(
q0a q

0
b

/
z0T

2
)]
,

llh
3
2 = γM ′2 z0T

[
−√γ +

1

2 γ z0T

[
q0ρ − (γ + 1) q0T

]
+O

(
q0a q

0
b

/
z0T

2
)]
.

 (C 5c)

Case |q0T | � z0T . When |q0T | � z0T , expansions of λk in terms of the parameter z0T /q
0
T

yield

λhh1 = q0T +
[
q0ρ + (γ − 1) q0T

] z0T 2

q0T
2 +O

(
z0T

4/
q0T

4
)
,

λhh2 =
√∣∣1− q0ρ/q0T ∣∣ z0T − 1

2

[
q0ρ + (γ − 1) q0T

] z0T 2

q0T
2 +O

(
z0T

3/
q0T

3
)
,

λhh3 = −
√∣∣1− q0ρ/q0T ∣∣ z0T − 1

2

[
q0ρ + (γ − 1) q0T

] z0T 2

q0T
2 +O

(
z0T

3/
q0T

3
)
.


(C 6)

Once inserted into (C 3), these approximations lead to

lhh
1
1 =

q0ρ
q0T

T 0 +O
(
z0T

2/
q0T

2
)
,

lhh
1
2 = O

(
z0T

2/
q0T

2
)
,

lhh
1
3 = ρ0,


(C 7a)

lhh
2
1 = T 0

[√∣∣1− q0ρ/q0T ∣∣+O
(
z0T
/
q0T
)]
,

lhh
2
2 = γM ′2 z0T

[
1 +O

(
z0T
/
q0T
)]
,

lhh
2
3 = −ρ0 z

0
T

q0T
= O

(
z0T
/
q0T
)
,


(C 7b)

lhh
3
1 = T 0

[√∣∣1− q0ρ/q0T ∣∣+O
(
z0T
/
q0T
)]
,

lhh
3
2 = γM ′2 z0T

[
−1 +O

(
z0T
/
q0T
)]
,

lhh
3
3 = ρ0

z0T
q0T

= O
(
z0T
/
q0T
)
,


(C 7c)
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respectively.

C.2. Calculations specific to self-similar flows

All of the above considerations as well as those of §§4.2.1, 4.2.2 are relevant to arbitrary
one-dimensional non-viscous compressible flows with nonlinear heat conduction. When
considering the self-similar flows of §3, the linear wave analysis of the time-dependent
system (4.1) benefits from the following result: with the notation

T = diag
(
t̄α−1 , 1 , t̄1−α

)
,

system (4.1) is equivalent to

∂U1

∂t̄
+ t̄−1 T −1

(
t̄2α A0 ∂2.

∂m02
+ t̄α B0 ∂.

∂m0
+ C0

)
T U1 = 0, (C 8)

where the matrices A0, B0, C0 are functions of the sole reduced abscissa ξ. Accordingly,
the properties of (4.1) may be inferred from those of these reduced matrices. In particular,
the eigenvalues λk of B0 are such that

λk(m0, t̄) = t̄α−1 Λk(ξ), k = 1, 2, 3,

where Λk are the eigenvalues of B0, with corresponding left and right eigenvectors given
by (

t̄α−1 Lk1 Lk2 t̄1−α Lk3
)>
, and

(
t̄1−αRk1 Rk2 t̄α−1Rk3

)>
,

where Lk = (Lki ) and Rk = (Rki ) are, respectively, left and right eigenvectors of B0

associated to the eigenvalue Λk. As a consequence, the linear-wave characteristic equa-
tions (4.9) can be written as

t̄2α−2 Lk1 dρ1 + t̄α−1 Lk2 dv1x + Lk3 dT 1 = 0, along Ck:
dm0

dt̄
= t̄α−1 Λk, k = 1, 2, 3,

inducing that the knowledge of the set of reduced functions (Λk,L
k), k = 1, 2, 3, is

sufficient for assessing entirely the properties of (4.9).
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