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In this supplementary material, we provide some details of the linear stability

analyses that were carried out to investigate the influence of insoluble surfactant on

the Rayleigh-Plateau (RP) instability and the Rayleigh-Taylor (RT) instability.

1 Rayleigh-Plateau instability

In the case where the cylinder is spinning so rapidly that gravitational forces are

negligible, Eqs. (16) and (17) of the main text are the two coupled evolution equations

that describe the variation of the film thickness and surfactant concentration. To

gain insight into the growth of the axisymmetric RP instability, we neglect angular

variations in film thickness and set ∂h/∂θ = ∂3h/θ3θ = 0. With this assumption,

Eqs. (16) and (17) of the main text become
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In the case where surfactant has no influence on film evolution (Ma = 0), Eq. (1)

reduces to that obtained by Evans et al. [1] for a surfactant-free axisymmetric film.

A standard normal mode decomposition is used for h and Γ,

h(x, y, t) = Hb + H0 exp(ikyy + st),

Γ(x, y, t) = Γb + Γ0 exp(ikyy + st), (4)

Substitution of the above equations into Eqs. (1) and (2) leads to an eigenvalue

problem of the form
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It is found that both roots are purely real, and only one of the roots becomes

positive; it is this root shown in the results below.

As an example, we consider the case where S = W 2Bo = 0.09, Hb = 0.03162,

Γb = 1, and Pe = 105. We solve matrix equation (5) for three different values of

Ma to yield growth rates of the RP instability, sRP , as a function of wavenumber ky.

Results are shown in Fig. 1a.

Figure 1: (a) Growth rates of the RP instability versus wavenumber for three different

values of Ma with S = 0.09, Hb = 0.03162, Γb = 1, and Pe = 105. The arrows

indicate the direction of increasing Marangoni number. (b) Corresponding most-

dangerous wavelength (red dashed line) and cutoff wavelength (black solid line) of

the RP instability versus Marangoni number.
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Fig. 1a shows that the growth rate of the RP instability is positive over a range

of wavenumbers (unstable region) and negative beyond the cutoff wavenumber (sta-

ble region). With an increase in the value of Ma, which corresponds to stronger

Marangoni stresses, the value of sRP decreases in the unstable region but increases

in the stable region. This indicates that Marangoni stresses tend to suppress the

growth rate of the RT instability, but hinder the leveling of perturbations to the film

thickness. Similar behavior is also observed in the case where axial variations are

neglected and perturbations can only grow in the angular direction [2]. The physical

mechanisms responsible for the behavior observed in Fig. 1a are the same as those

at play when purely angular perturbations are present [2].

We now investigate the evolution of the most-dangerous wavelength, λ⋆
ring =

2π/kmax
y , for which the perturbation has the largest growth rate, and the cutoff

wavelength, λring = 2π/kcutoff
y , for which the perturbation has a growth rate of zero.

Here, kmax
y and kcutoff

y are the corresponding most-dangerous wavenumber and cutoff

wavenumber defined in the main text. Results are shown in Fig. 1b for 0 ≤ Ma ≤ 0.3.

In the surfactant-free case, the cutoff wavelength and the most-dangerous wavelength

are λring = 2π/
√

1 + S = 6.02 and λ⋆
ring = 2

√
2π/

√
1 + S = 8.51, respectively.

Marangoni stresses have no influence on the cutoff wavelength (black solid line in

Fig. 1b), and this is because at the cutoff wavelength, centrifugal forces are balanced

by capillary forces and no Marangoni flows are present [2]. Marangoni stresses give

rise to a slight increase (about 2%) in the value of the most-dangerous wavelength

(red dashed line in Fig. 1b) in a small region near Ma = 0. However, with an increase

in Ma (i.e., stronger Marangoni stresses), the value of λ⋆
ring drops back to its value in

the surfactant-free case. Similar behavior is observed for other parameter values.

2 Rayleigh-Taylor instability

In the case where the cylinder is stationary, the film on the cylinder tends to sag

under the action of gravity, forming a ridge of liquid aligned with the cylinder axis at

the cylinder bottom [3]. This ridge is unstable to gravity-induced axial perturbations,

which is analogous to the Rayleigh-Taylor instability of a liquid layer underneath a

horizontal flat plate.

To gain insight into the effects of surfactant on the RT instability, we consider a

two-dimensional thin film of a Newtonian liquid laden with an insoluble surfactant

underneath a horizontal plate (Fig. 2). Applying the lubrication approximation yields
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Figure 2: Schematic of problem geometry

the following dimensional evolution equations for the film thickness and surfactant

surface concentration, respectively [1, 5]:
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Γt + (usΓ)y = DΓyy, (8)

where ϕ is the spreading pressure defined in the main text (§2.2) and us is the surface

velocity at z = h(y, z, t),
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To be consistent with Eqs. (1) and (2), we scale all lengths by R which can

also be considered as the characteristic length scale along the film (y-direction). The

resulting dimensionless evolution equations are
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Γt + (usΓ)y = Pe−1Γyy, (11)

where dimensionless constants Bo, Ma, and Pe are defined in the main text (Table

2).

After using a standard normal mode decomposition for h and Γ, we obtain a new

matrix equation
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Figure 3: (a) Growth rates of the RT instability versus wavenumber for three different

values of Ma with Bo = 1, Hb = 0.03162, Γb = 1, and Pe = 105. The arrows

indicate the direction of increasing Marangoni number. (b) Corresponding most-

dangerous wavelength (red dashed line) and cutoff wavelength (black solid line) of

the RT instability versus Marangoni number
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As before, both roots are purely real, and only one of the roots becomes positive;

it is this root shown in the results below.

As an example, we consider the case where Bo = 0.01, Hb = 0.03162, Γb = 1,

and Pe = 105. We solve for growth rates of the RT instability, sRT , as a function of

wavenumber k. Results are shown in Fig. 3a for three different values of Ma. The

most-dangerous wavelength, λ⋆
drop, and the cutoff wavelength, λdrop, as functions of

Ma are shown in Fig. 3b. We briefly summarize our findings.

Marangoni stresses tend to suppress the growth rate of the RT instability (Fig.

3a), similar to the RP-instability (Fig. 1a). With the presence of surfactant, the cutoff

wavelength remains constant, λdrop = 2π/
√

Bo = 6.28 (black solid line in Fig. 3b),

while the value of the most-dangerous wavelength, λ⋆
drop, increases slightly (by about

2%) in a small region near Ma = 0 and drops back to its value in the surfactant-free

case (λ⋆
drop = 2

√
2π/

√
Bo = 8.89) with an increase in Ma (red dashed line in Fig.

3b). Similar behavior is observed for other parameter values.
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