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Appendix A. Maximum entropy principle and the anisotropic
Maxwellian distribution function

Appendix A is given in the main text of Saha & Alam (2017).

Appendix B. Source terms in quenched and ignited states

The integral expression for the source/production term in the second-moment balance
is given by

ℵ =
∫
mCC

(
∂f
∂t

)
coll

dC = σ2

2

∫
∆
(
mCC

)
f(C1)f(C2) (g · k) dkdC1dC2. (B 1)

The total change of the dyadic product CC in an inelastic collision can be written, using
the collision rules

C ′1 = C1 −
1

2
(1 + e) (g · k)k and C ′2 = C2 +

1

2
(1 + e) (g · k)k, (B 2)

and after some algebra, as

∆
(
CC

)
=

(1 + e)

2

{
(1 + e) (g · k)

2
kk − (g · k)kw − (g · k)wk

}
, (B 3)

where g = c1 − c2, and

w = C1 −C2 = g − (u1 − u2) = g − δu (B 4)

is the relative ‘fluctuation’ velocity of two colliding particles and δu = (u1 − u2).
Upon substituting (B 3) and (B 4) into (B 1), we obtain

ℵ = ℵ1 + ℵ2 + ℵ3, (B 5)

where

ℵ1 =
mσ2

2

(1 + e)

2

∫ [
(1 + e) (w · k)kk − (kw + wk)

]
(w · k)

2
f1f2dkdC1dC2,(B 6)

ℵ2 =
mσ2

2

(1 + e)2

2

∫
(δu · k)

3
kkf1f2dkdC1dC2, (B 7)
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ℵ3 =
mσ2

2

(1 + e)

2

∫
(δu · k)

[
3(1 + e)

{
(w · k) + (δu · k)

}
(w · k)kk

−
{

2 (w · k) + (δu · k)
}

(kw + wk)
]
f1f2dkdC1dC2. (B 8)

In the quenched state, the particles are assumed to follow fluid velocity and hence w ≈ 0
and g = δu, yielding ℵ1 = 0 = ℵ3 and the final form of the source term

ℵqs ≈ ℵ2 =
mσ2

2

(1 + e)2

2

∫
(δu · k)

3
kkf1f2dkdC1dC2, (B 9)

which is evaluated in (2.27) in the main text.
In the ignited state, |δu · k| � |w| and w ≈ g and hence ℵ1 dominates over ℵ2 + ℵ3

and consequently we can write

ℵis =
mσ2

2

(1 + e)

2

∫ [
(1 + e) (g · k)kk − (kg + gk)

]
(g · k)

2
f1f2dkdC1dC2.

(B 10)

Now for convenience of calculation using anisotropic Maxwellian we introduce a vector
j that lies in the plane formed by (g,k) and is perpendicular to the contact vector k.
Then the integral expression for ℵis modifies to

ℵis = −mσ
2

2

(1 + e)

2

∫ [
(1− e) (g · k)kk + (kj + jk) (g · j)

]
(g · k)

2
f1f2dkdC1dC2

(B 11)

as in (2.24) in the main text.

Appendix C. Analysis in the ignited state for inelastic hard spheres

Appendix C is given in the main text of Saha & Alam (2017).

Appendix D. Coefficients ai in equation (3.1)

Explicit expressions of the individual coefficients ai appearing in equation (3.1) of the
main text are given by:

a10 = 86416243200(3− e)4(1− e)3(1 + e)7πSt6ν7, (D 1)

a9 = 28805414400(3− e)3(1− e)2(1 + e)6(19− 13e)π(3/2)St5ν6, (D 2)

a8 = 28576800(3− e)2(1− e)(1 + e)5π2St4ν5
(

252(197− 278e+ 93e2)

+5(1747− 1438e+ 363e2)St2
)
, (D 3)

a7 = 3810240(3− e)(1 + e)4
√
πSt3ν4

(
2100(1− e)(241− 284e+ 79e2)π2

+25(12607− 19952e+ 10099e2 − 1746e3)π2St2

−3456(3− e)3(1− e)2(1 + e)4St3ν3
)
, (D 4)

a6 = 79380(1 + e)3πSt2ν3
(

21000(1− e)(871− 854e+ 199e2)π2

+500(56617− 78677e+ 35629e2 − 5361e3)π2St2

−125(1691 + 539e− 1223e2 + 337e3)π2St4
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−27648(3− e)3(1− e)(1 + e)4(29− 23e)St3ν3
)
, (D 5)

a5 = 18900(1 + e)2π(3/2)Stν2
(

441000(1− e)(23− 11e)π2

+10500(3437− 3093e+ 688e2)π2St2 − 875(477 + 442e− 247e2)π2St4

−580608(3− e)2(1− e)(1 + e)4(11− 7e)St3ν3

−1152(3− e)2(1 + e)4(991− 934e+ 279e2)St5ν3
)
, (D 6)

a4 = 63(1 + e)ν
(

165375000(1− e)π4 + 656250(2437− 1069e)π4St2

−109375(107 + 193e)π4St4 − 48384000(3− e)(1− e)(1 + e)4(37− 19e)π2St3ν3

−288000(3− e)(1 + e)4(3917− 3368e+ 843e2)π2St5ν3

−3024000(3− e)3(1 + e)4π3St6ν3 + 7962624(3− e)4(1− e)(1 + e)8St6ν6
)
, (D 7)

a3 = 2520
√
πSt

(
2296875π4 − 504000(1− e)(1 + e)4(41− 17e)π2Stν3

−6000(1 + e)4(5617− 4438e+ 933e2)π2St3ν3 − 189000(3− e)2(1 + e)4π3St4ν3

−1000(1 + e)4(1203− 1002e+ 247e2)π2St5ν3

+663552(3− e)3(1− e)(1 + e)8St4ν6
)
, (D 8)

a2 = −2400(1 + e)3πStν2
(

1323000(1− e)π2 + 15750(383− 151e)π2St2

+165375(3− e)π3St3 + 875(789− 305e)π2St4

−870912(3− e)2(1− e)(1 + e)4St3ν3 − 1728(3− e)2(1 + e)4(47− 39e)St5ν3
)
,(D 9)

a1 = −2000(1 + e)2π(3/2)St2ν
(

441000π2 + 55125π3St+ 98000π2St2

−580608(3− e)(1− e)(1 + e)4Stν3 − 3456(3− e)(1 + e)4(47− 39e)St3ν3
)
,(D 10)

a0 = 1440000(1 + e)5π2St2(4 + St2)ν3
(

42(1− e) + (13− 9e)St2
)
. (D 11)

Appendix E. Ordering analysis to determine three temperatures,
and the limit of large St

We solve (3.1) analytically in the asymptotic limit ν � 1, St� 1, and St3ν � 1 (Tsao
& Koch 1995), and three feasible solutions have been found as described below. Note
that the assumption of St3ν � 1 puts a restriction on the derived solutions to remain
valid only at finite values of St for “inelastic” particles; however, the solution becomes
exact (as in Appendix C) for the limiting case of a gas-solid suspension of elastically-
colliding (e = 1) particles – the latter is due to the exact balance between the shear-work
and the viscous dissipation as discussed in Appendix E.4.

E.1. Temperature in the quenched state

For ξ ∼ O(St3/2
√
ν), the leading order term in (3.1) is O(St

11
2 ν

3
2 ) and consequently

we have

a3ξ
3 + a1ξ = 0, (E 1)

where

a3 = 5788125000π
9
2St, a1 = −196000000π

7
2 (1 + e)2St4ν. (E 2)
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The solution at this level of approximation is

Tqs = ξ2 =
32(1 + e)2

945π
St3ν, (E 3)

which corresponds to the temperature in the quenched state. Note that the quenched
temperature increases with increasing both St and ν.

E.2. Unstable temperature

When ξ ∼ O(St3ν)−1, the highest-order term in (3.1) is O(1/St8ν3), and on neglecting
terms smaller than this, we have at leading order

a4ξ
4 + a3ξ

3 = 0, (E 4)

where

a4 = −6890625(1 + e)(107 + 193e)π4St4ν, a3 = 5788125000π
9
2St. (E 5)

Therefore, we have √
Tus = ξ =

840
√
π

(1 + e)(107 + 193e)

(
1

St3ν

)
, (E 6)

This is the temperature of an intermediate state which is unstable – note that Tus
decreases with increasing St and ν.

E.3. Temperature in the ignited state

In the asymptotic limit of ξ ∼ O(St/ν), the leading order term in (3.1) is O(St12/ν3)
and consequently we have

a7ξ
7 + a6ξ

6 = 0, (E 7)

where

a7 = 95256000(3− e)(1 + e)4(12607− 19952e+ 10099e2 − 1746e3)π
5
2St5ν4

a6 = −9922500(1 + e)3(1691 + 539e− 1223e2 + 337e3)π3St6ν3.

}
(E 8)

Therefore, the temperature at this order of approximation is√
Tis = ξ =

5(1691 + 539e− 1223e2 + 337e3)
√
π

48(3− e)(1 + e)(12607− 19952e+ 10099e2 − 1746e3)

(
St

ν

)
, (E 9)

which corresponds to the temperature in the ignited state. While Tis increases with
increasing St, it deceases with increasing the particle volume fraction ν.

E.4. Scalings in the limit of large Stokes number

To obtain the large shear-rate scaling (i.e. as γ̇ → ∞) of temperature for “inelastic”
particles suspended in a viscous gas, let us consider the energy equation (i.e. the trace
of the second moment balance) under homogeneous shear

µγ̇2 = Dinelastic +Dvis, (E 10)

where

Dvis ∼ T/τv ∼ γ̇St−1T and Dinelas ∼ (1− e2)T 3/2 with St = γ̇τv = γ̇

(
m

3πµgσ

)
.

(E 11)



Hysteresis and non-Newtonian rheology in a sheared gas-solid suspension 5

(a)

10
0

10
1

10
2

10
3

St

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

T
1
/2

e=1.0

e=0.999

e=0.99

(b)
10

0
10

1
10

2
10

3

St

10
-5

10
0

10
5

10
10

e=1.0

e=0.999

e=0.99

Slope +2

Slope -7

Slope +1

Figure E.1. (a) Variation of dimensionless temperature,
√
T ≡

√
T̃ /(γ̇σ/2)2, with Stokes

number St = γ̇τv at a mean volume fraction of ν = 10−5. On the ignited-branch, the red-dashed

line (e = 1) has a slope of 1 [and hence
√
T ∝ St ∼ γ̇,⇒ T̃ (e = 1) ∝ γ̇4], whereas the “inelastic”

curves (e = 0.999, 0.99) has nearly zero-slope [and hence T̃ (e < 1) ∝ γ̇2] at St > 300. (b) Same
as panel a but for dimensionless viscosity of the particle phase; see text for details.

Since µ ∼ T 1/2 and Dvis → 0 as St = γ̇τv → 0, it immediately follows that the
“dimensional” temperature (on ignited state) behaves like

T̃is ∼ γ̇2. (E 12)
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This quadratic scaling holds for an “inelastic” gas-solid suspension with e 6= 1 since the
contribution of viscous dissipation vanishes in the limit of St → ∞ (irrespective of the

value of e 6= 1). This is evident in the insets of Fig. 2(b,c,d) where
√
T̃ /γ̇2σ2 is seen to

approach a constant value.

For elastic particles (e = 1), however, the balance between shear work and viscous
dissipation in (E 10) yields

T̃is ∼ γ̇4. (E 13)

These scaling relations (E 12-E 13) were discussed by Sangani et al. (1996, see their
equations 3.14 and 3.15). The ‘change-in-scaling’ from (E 12) to (E 13) is illustrated in
figure E.1 which is obtained from the numerical solution of our Eqn. (3.1) in the main
text. This figure also confirms the correct St-scaling of solutions in Eqn. (E6) and Eqn.
(E3) for unstable (

√
Tus ∼ St−3) and quenched (

√
Tqs ∼ St3/2) states, respectively. In

summary, the ‘quartic’ power-law scaling (of the ignited-branch temperature) for elastic
particles changes to quadratic-scaling for inelastic particles as St→∞.

The above ‘change-in-scaling’ of temperature is directly tied to the shear-rate scaling
of shear viscosity as illustrated in figure E.1(b):

µis ∝ Stα, µqs ∝ St2 and µus ∝ St−7, (E 14)

where α = 1 and 0 for e = 1 and e < 1, respectively; these exponents are marked over the
respective double-arrow in figure E.1(b). In summary, while the ignited and quenched
states are shear-thickening, the middle (unstable) branch is shear-thinning. The related
issues are discussed in §4.2.1 of the main text.

Appendix F. Analytical determination of limit-points Stc1 and Stc2

At the critical/limit points, two solution branches of equation (3.1) of the main text
corresponding to two different states [(i) quenched (Tqs) and unstable (Tus) states and
(ii) unstable (Tus) and ignited (Tis) states] meet and consequently we have saddle-node
bifurcations from one stable state to another. Therefore, these limit points correspond
to the double roots of (3.1) at which the following conditions must be satisfied:

G(ξc) = 0 and G′(ξc) = 0. (F 1)

F.1. Determining Stc1 : discontinuous transition from “ignited” to “quenched” states

The critical Stokes number, Stc1 , for the transition from the ignited to quenched states
corresponds to the limit point at which the temperatures corresponding to the ignited
(Tis) and unstable (Tus) branches overlap with each other. Considering ξ ∼ O(νSt)−1 �
1, and retaining the highest-order terms, (3.1) reduces to

G ≈ a7ξ7 + a6ξ
6 + a5ξ

5 + a4ξ
4 + a3ξ

3 = 0 = a7ξ
4 + a6ξ

3 + a5ξ
2 + a4ξ + a3, (F 2)

and 4a7ξ
3 + 3a6ξ

2 + 2a5ξ + a4 = 0, (F 3)
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where

a7 = 95256000(3− e)(1 + e)4(12607− 19952e+ 10099e2 − 1746e3)π
5
2St5ν4

a6 = 9922500(1 + e)3π3St4
(

4(56617− 78677e+ 35629e2 − 5361e3)

−(1691 + 539e− 1223e2 + 337e3)St2
)
ν3

a5 = 16537500(1 + e)2π
7
2St3

(
12(3437− 3093e+ 688e2)

−(477 + 442e− 247e2)St2
)
ν2

a4 = 6890625(1 + e)π4St2(6(2437− 1069e)− (107 + 193e)St2)ν

a3 = 5788125000π
9
2St.


(F 4)

Using the condition of equal roots of a fourth-degree polynomial (F 2), we obtain an
expression for the critical Stokes number for the “ignited-to-unstable” transition:

Stc1 ≈ 9.9− 4.91e. (F 5)

While decreasing the Stokes number along the ignited-state branch (see figure 2), the
system jumps from the ignited to the quenched state at St < Stc1 for all ν < νlus
[equation (3.9) in the main text of Saha & Alam (2017)]. Therefore, (F 5) represents the
minimum/critical Stokes number below which (3.1) admits the unique “quenched” state
solution.

F.2. Determining Stc2 : discontinuous transition from “quenched” to “ignited” state

The limit point corresponding to the overlap of the quenched and unstable branches of
the system is denoted by the Stokes number Stc2 at which the temperatures associated
with the quenched (Tqs) and unstable (Tus) states coincide – above this critical value of
Stokes number the quenched state ceases to exist. Mathematically, Stc2 is the point of
the double root Tqs = Tus of (3.1) above which there exists only one feasible solution
Tis (corresponding to the ignited state) and the system jumps from the quenched state
into the ignited state At this order of approximation ξ ∼ O(1) and the highest order
terms are of the orders of νSt4 and St. Therefore on neglecting the terms of O(St4ν2)
and using the statement of Tqs = Tus, we have from (3.1)

G(ξc) ≈ a4ξ4 + a3ξ
3 + a1ξ = 0 = a4ξ

3 + a3ξ
2 + a1, (F 6)

and G′(ξc) ≈ 3a4ξ
2 + 2a3ξ = 0, (F 7)

where

a4 = −6890625(1 + e)(107 + 193e)π4St4ν

a3 = 5788125000π
9
2St

a1 = −196000000(1 + e)2π
7
2St4ν.

 (F 8)

It follows from (F 7) that

ξc =
−2a3
3a4

=
560
√
π

(1 + e)(170 + 193e)St3ν
. (F 9)

On substituting (F 9) into (F 6) we obtain the critical-surface

St3c2νc =

(
3087000π2

(1 + e)4(107 + 193e)2

) 1
3

, (F 10)

above which only the ignited state exists.
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Appendix G. Suspension viscosity and connection with other works

G.1. Suspension viscosity in quenched state

The second-moment balance equation for the quenched state of the particle phase is
given by

Pδβ
ρ(γ̇σ/2)2

1

γ̇
uα,δ +

Pδα
ρ(γ̇σ/2)2

1

γ̇
uβ,δ +

2

St

Pαβ
ρ(γ̇σ/2)2

=
ℵqsαβ

ργ̇3(σ/2)2
, (G 1)

where the expression for the source-term ℵqsαβ can be found in (2.27) in the main text.
The solution to the above equation for granular temperature is

T ∗ =
T

(γ̇σ/2)2
=

32(1 + e)2νSt3

945π

(
1 +

9π

16St
+

9

2St2

)
. (G 2)

It is straightforward to verify that the dimensionless shear stress is given by

P ∗xy ≡
Pxy

ρ(γ̇σ/2)2
= −η cos(2φ)T ∗ = −2(1 + e)2νSt

35

(
1 +

16

9π
St

)
. (G 3)

For homogeneous shear, we have Pxy = −µqsγ̇ and hence the expression for (dimensional)
shear viscosity in the quenched state is

µqs =
1

70
ρpν

2

(
St2

τv

)
(1 + e)2σ2

(
1 +

16

9π
St

)
. (G 4)

Inserting the expression for relaxation time

τv =
m

3πµgσ
, (G 5)

into (G 4) leads to the following expression

µqs = µg
(1 + e)2

2
ν2
(

32St

35π
+

18

35

)
St2 (G 6)

for the ‘quenched-state’ viscosity of the ‘particle-phase’ at finite Stokes number (St > 0).
This expression (G 6) differs from that of Tsao & Koch (1995) by a numerical factor of
2 for a suspension of elastic (e = 1) particles.

Adding (G 6) to the well-known Einstein-Batchelor formula (Batchelor & Green 1972;
Batchelor 1977) of viscosity for a dilute Stokesian suspension

µeff (St = 0) = µg(1 + 2.5ν + 6.2ν2) +O(ν3), (G 7)

we arrive at the “suspension”/“effective” viscosity of a dilute ‘granular’ (e 6 1) suspen-
sion at finite Stokes number:

µsus
µg

= 1 + 2.5ν + ν2
[
6.2 + St2

(1 + e)2

2

(
32St

35π
+

18

35

)]
+O(ν3St3). (G 8)

It is clear that finite St-correction appears at O(ν2), with a numerical factor depending
on the restitution coefficient.

G.2. Connection with other works and DST

We became aware of a recent work that uses gas kinetic theory (Hayakawa & Takada
2016; Hayakawa, Takada & Garzo 2017) in the context of a “thermalized” granular
gas. On the ignited branch, the scaling of granular temperature (and also that of shear
viscosity) with shear rate is found to be identical (quartic- and quadratic dependence
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with shear rate for elastic and inelastic particles, respectively) in both works. It must
be noted that while Hayakawa & Takada developed an effective “one-fluid” theory for
a suspension, yielding an expression for the suspension viscosity, the present work (as
well as Tsao & Koch (1995)) deals with a “mixture” theory having separate balance
equations for the particle and gas phases. Therefore, the effective viscosity of a dilute
suspension in the quenched state under the present formalism can be obtained as (G 8) as
discussed in Appendix G.1. In the collisional regime of rapid granular flows, it is known
that µp � µg (i.e. the gas-phase has negligible contributions to the collisional viscosity
of particles) and therefore µsus ≈ µp (where µp = µis is the viscosity of the particle
phase in the ignited state), thereby tying one-fluid and two-fluid formalisms in the large
Stokes-number regime of a gas-solid suspension (and hence on the ignited branch). They
also introduced a bath temperature (Tex > 0) for the suspension that yields a Newtonian
branch for viscosity at small shear rates – this could be an analog of our suspension
viscosity (G 8) in the quenched state. In fact, their ‘finite’ bath temperature corresponds
to the present zero-temperature state (see Appendix C) below a minimum Stokes number.

The finding of Hayakawa & Takada (2016) on discontinuous shear thickening (DST) as
a “saddle-node” bifurcation appears similar to the present findings; they carried out one-
dimensional stability analyses of three solutions which confirmed that the shear-thinning
branch is indeed unstable. However, the connection of the present system of a dilute
“gas-solid” suspension (with the gas-phase undergoing Stokes flow) with a thermalized
granular gas (in which the Brownian forces influence the velocity distribution) remains
unclear, especially in the small shear-rate regime where the ignited-quenched transition
occurs. These issues can be reconciled in future.

In the area of liquid-solid suspensions (Brady & Bossis 1988; Boyer, Pouliquen
& Guazzelli 2011), the shear-thickening and its discontinuous analog are well-known
starting from the seminal experiments of Hoffman (1972). There have been a renewed
research activity to understand the origin of DST in the “dense” regime of colloidal and
non-colloidal suspensions as well as in dense granular media (Brown & Jaeger 2014;
Denn & Morris 2014). Extending the present theoretical formalism to the dense regime
of suspensions, by incorporating frictional interactions and related physics (Seto et al.
2013; Fernandez et al. 2013; Wyart & Cates 2014; Clavaud et al. 2017), would be an
interesting future work.

Appendix H. Grad moment expansion (GME) for inelastic gas-solid
suspension

Appendix H is given in the main text of Saha & Alam (2017).

Appendix I. Burnett-order solution of Sela and Goldhirsch (1998)

Sela & Goldhirsch (1998) solved the inelastic Boltzmann equation perturbatively via
a Chapman-Enskog-like expansion around the Maxwellian distribution function. They
carried out a “double-expansion” in terms of two small parameters: (i) the Knudsen
number (Kn) and (ii) the inelasticity (ε = (1 − e2)1/2); while the former is a measure
of the gradients of hydrodynamic fields, the latter is a measure of the degree of inelastic
dissipation. Since in the double-limit of Kn → 0 and ε → 0, the sheared granular gas
approaches the rest state of a molecular gas, the leading term of the Chapman-Enskog
expansion is still the Maxwellian distribution function. The details can be found in the
original article, and here we write down their Burnett-order expression for the stress



10 S. Saha and M. Alam

tensor:

Pαβ = ρTδαβ − 2µ̃ρl(3T )1/2
∂uα
∂xβ

+ ω̃1ρl
2(∇ · u)

∂uα
∂xβ

−ω̃2ρl
2

(
∂

∂xα

(1

ρ

∂(ρT )

∂xβ

)
+
∂uα
∂xδ

∂uδ
∂xβ

+ 2
∂uα
∂xδ

∂uδ
∂xβ

)
+ 3ω̃3ρl

2 ∂2T

∂xα∂xβ

+3ω̃4
l2

T

∂(ρT )

∂xα

∂T

∂xβ
+ 3ω̃5

ρl2

T

∂T

∂xα

∂T

∂xβ
+ ω̃6ρl

2 ∂uα
∂xδ

∂uδ
∂xβ

, (I 1)

where l = 1/πnσ2 is the mean free-path, ω̃i’s are constants, and an over-bar on any
tensorial quantity denotes its traceless part.

For the uniform shear flow u = (γ̇y, 0, 0), the density ρ, the shear rate γ̇ and the
granular temperature T remain constants, and consequently the non-zero components of
the stress tensor follow from (I 1):

Pxx = ρT + 1
12 (ω̃6 + 4ω̃2)ρl2γ̇2

Pyy = ρT + 1
12 (ω̃6 − 8ω̃2)ρl2γ̇2

Pzz = ρT − 1
6 (ω̃6 − 2ω̃2)ρl2γ̇2

Pxy = −µ̃ρlγ̇
√

3T .

 (I 2)

By substituting the above stress tensor and the related expression for the collisional
dissipation rate (not shown) into the granular energy balance equation, we obtain an
expression for the granular temperature:

T

l2γ̇2
=

4µ̃− (1− e2)ρ̃1

6δ̃
, (I 3)

where

µ̃ ≈ 0.3249 + 0.0576(1− e2), and δ̃ ≈
√

16

27π
(1− e2)− 0.0112(1− e2)2, (I 4)

with ρ̃1 = 0.1338, ω̃2 = 0.6422 and ω̃6 = 2.3510. The expressions for the first and second
normal stress differences follow directly from (I 2-I 3):

N1 =
Pxx−Pyy

p = 6ω̃2δ̃
4µ̃−(1−e2)ρ̃1

N2 =
Pyy−Pzz

p = 3(ω̃6−4ω̃2)δ̃
2(4µ̃−(1−e2)ρ̃1) ,

}
(I 5)

where p = ρT is the pressure. Expressions (I 5) are written in simplified forms in equation
(5.5) in the main text as functions of the restitution coefficient.
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