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1. Detailed Derivation

The viscous potential flow approach employing a decomposition of the velocity field
into a curl-free and vortical part used in our derivation and earlier (Lamb 1932; Miles
1968; Prosperetti 1976; Menikoff et al. 1978; Prosperetti 1981), relies on the following
identity for a vector field vp(x),

∇(∇ · vp)−∇× (∇× vp) = ∇2vp. (1.1)

If vp = ∇φp, then identity 1.1 reduces to

∇(∇2φp) = ∇2(∇φp). (1.2)

This implies that a potential velocity field vp and a corresponding pressure field pp
obtained from the Bernoulli’s equation, satisfies the Navier-Stokes equation exactly
(Joseph 2003), since according to identity 1.2 the viscous term in the Navier-Stokes
equation vanishes identically for a potential flow field. However this potential flow field vp

and pp, does not satisfy continuity of tangential stresses and of tangential velocities (slip)
at an interface separating two fluids of different viscosities and densities. An additional
velocity and pressure field, vv and pv is needed and the composite fields viz. vp +vv and
pp + pv are determined subject to the constraint that each field individually satisfies the
linearised Navier-Stokes as well as continuity equations while the composite field satisfies
the kinematic boundary condition, continuity of tangential and normal stresses and that
of tangential velocities. Due to linearity, the composite solution will automatically satisfy
the linearised Navier-Stokes equation as well. We determine vp and pp from solving the
Laplace and linearised Bernoulli’s eqution respectively.

1.1. Potential Flow

The potential solution satisfies the axisymmetric Laplace equation. From variable
separation the radial part of the solution is given by Bessel function of the first kind
(boundedness at r = 0, eliminates the Bessel function of the second kind)

φUp (r, z, t) = F (z)J0(kr)
.
ak(t), φLp (r, z, t) = G(z)J0(kr)

.
ak(t), (1.3)

with η(r, t) = ak(t)J0(kr). We set the time dependence of φp equal to
.
ak(t) anticipating

the linearised kinematic boundary condition at the interface Eq. 1.7. The axisymmetric
Laplace equation is obtained from the continuity equation ∇·vp = 0 written in cylindrical

axisymmetric coordinates with up ≡ ∂φp

∂r and vp ≡ ∂φp

∂z . This is (Kundu & Cohen 2002),

∂2φp
∂r2

+
1

r

∂φp
∂r

+
∂2φp
∂z2

= 0. (1.4)
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Substituting Eq. 1.3 in this and using the equation for J0(r̄) (r̄ ≡ kr),

d2J0(r̄)

dr̄2
+

1

r̄

dJ0
dr̄

+ J0(r̄) = 0, (1.5)

we obtain

d2F

dz2
+ k2F = 0,

d2G

dz2
+ k2F = 0. (1.6)

Using φU (r,∞, t) → 0 and φL(r,−∞, t) → 0, and the linearised kinematic boundary
condition

∂φUp
∂z

∣∣∣∣
z=0

=
∂φLp
∂z

∣∣∣∣
z=0

=
∂η

∂t
(1.7)

we obtain

φUp (r, z, t) = −k−1 exp[−kz]J0(kr)
.
ak(t), φLp (r, z, t) = k−1 exp[kz]J0(kr)

.
ak(t) (1.8)

The potential part of pressure pUp and pLp is given by the linearised Bernoulli’s equation,

pLp (r, z, t) = −ρL
∂φLp
∂t
− ρLgz

pUp (r, z, t) = −ρU
∂φUp
∂t
− ρUgz. (1.9)

If the flow is purely irrotational, then continuity of pressure at the linearised interface,
leads to the following equation for ak(t),

..
ak(t) +

[(
ρL − ρU

ρL + ρU

)
gk

]
ak(t) = 0 (1.10)

As we include viscous effects, instead of imposing continuity of pressure, we impose a
condition on viscous normal stresses (accounting for jump due to surface tension) at the
interface and this will lead to a modified viscous equation for ak(t). This equation is
derived in the next section.

1.2. Viscous Flow

The viscous part of the flow satisfies the linearised Navier-Stokes equation in both the
fluids

∂vv
U

∂t
= − 1

ρU
∇pUv + νU∇2vv

U ,
∂vLv
∂t

= − 1

ρL
∇pLv + νL∇2vv

L. (1.11)

Note that gravity has already been included as a body force in the potential part of the
calculation and hence is excluded in the vortical calculation. We solve the viscous part
of the flow in stream-function vorticity formulation. The curl of Eqs. 1.5 gives us the
vorticity equation

∂ωU

∂t
= νU∇2ωU ,

∂ωL

∂t
= νU∇2ωL. (1.12)

The Stokes stream function rψv (Miles 1968) is defined as

uUv ≡
∂ψUv
∂z

, vUv ≡ −
1

r

∂(rψUv )

∂r

uLv ≡
∂ψLv
∂z

, vLv ≡ −
1

r

∂(rψLv )

∂r
(1.13)
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The azimuthal vorticity (ω)θ ≡ ωθ, is given by

ωUθ ≡
∂uUv
∂z
− ∂vUv

∂r
, ωLθ ≡

∂uLv
∂z
− ∂vLv

∂r
. (1.14)

Combining Eq. 1.13 and 1.14, the relation between vorticity and streamfunction is written
as

∂2ψUv
∂r2

− ψUv
r2

+
1

r

∂ψUv
∂r

+
∂2ψUv
∂z2

= ωUθ ,
∂2ψLv
∂r2

− ψLv
r2

+
1

r

∂ψLv
∂r

+
∂2ψLv
∂z2

= ωLθ .

(1.15)

An equation for ωθ can be obtained from Eq. 1.12 using the expression for the laplacian
of a vector in cylindrical axisymmetric coordinates (Kundu & Cohen 2002)),

∂ωUθ
∂t

= νU
(
∂2ωUθ
∂r2

− ωUθ
r2

+
1

r

∂ωUθ
∂r

+
∂2ωUθ
∂z2

)
,

∂ωLθ
∂t

= νL
(
∂2ωLθ
∂r2

− ωLθ
r2

+
1

r

∂ωLθ
∂r

+
∂2ωLθ
∂z2

)
(1.16)

The solution of Eqs. 1.15 and 1.16 subject to boundary and initial conditions, determine
the flow field in both fluids. We set the radial part of all quantities as Bessel function of
the first kind J1(kr) viz.

ωUθ (r, z, t) = ΩU (z, t)J1(kr), ψUv (r, z, t) = ΨU (z, t)J1(kr), (1.17)

ωLθ (r, z, t) = ΩL(z, t)J1(kr), ψLv (r, z, t) = ΨL(z, t)J1(kr). (1.18)

Substitution of Eqs. 1.17 and 1.18 in Eq. 1.15, gives us an equation relating Ω to Ψ ,

∂2ΨU

∂z2
− k2ΨU = ΩU (z, t),

∂2ΨL

∂z2
− k2ΨL = ΩL(z, t). (1.19)

Note that in deriving Eq. 1.19, we have used the equation governing J1(r̄) i.e.

d2J1(r̄)

dr̄2
+

1

r̄

dJ1
dr̄

+

(
1− 1

r̄2

)
J1(r̄) = 0. (1.20)

An equation involving Ω alone is obtained by substituting expressions for vorticity from
Eqs. 1.17 and 1.18 into Eqs. 1.16 and then using Eq. 1.20.

∂ΩU

∂t
= ν

(
∂2ΩU

∂z2
− k2ΩU

)
,

∂ΩL

∂t
= ν

(
∂2ΩL

∂z2
− k2ΩL

)
. (1.21)

Eqs. 1.19 and 1.21 are the central equations. These turn out to be identical to those
derived by Prosperetti (1981) for a planar geometry. We follow the approach of Pros-
peretti (1981) for solving these equations. These steps involve additional manipulations
with Bessel functions not necessary in the planar case.

1.3. Viscous pressure

In order to obtain an equation for ak(t), we will need an expression for the viscous
part of pressure pv in both the fluids. This is obtained by integrating the vertical
momentum equation. We demonstrate the algebra for the lower fluid. The (linearised)
vertical momentum equation is (Kundu & Cohen 2002)

1

ρL
∂pLv
∂z

= νL
[

1

r

∂

∂r

(
r
∂vLv
∂r

)
+
∂2vLv
∂z2

]
− ∂vLv

∂t
(1.22)

Note that gravity is already included in the potential flow and hence is not present

in the viscous part of the calculation. With vLv = − 1
r
∂(rψLv )
∂r and Eq. 1.18, −vLv =
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kΨL(dJ1(r̄)/dr̄ + J1/r̄). Substituting this in Eq. 1.22, using the equation governing J0
and the identity J ′1(x) + J1(x)/x = J0(x), prime indicating differentiation, we obtain

1

ρL
∂pLv
∂z

= kJ0(kr)

[
νL
(
k2ΨLv −

∂2ΨL

∂z2

)
+
∂ΨL

∂t

]
(1.23)

Eq. 1.23 can be further simplified by using Eq. 1.19 on the right hand side to rewrite it
as

1

ρL
∂pLv
∂z

= kJ0(kr)

[
−νLΩL +

∂ΨL

∂t

]
(1.24)

A similar equation can be written for the viscous pressure in the upper fluid.

2. Boundary/Initial conditions

In this section, we provide a derivation of the kinematic boundary condition, continuity
of shear stress and tangential velocities at the interface.

2.1. Initial conditions

There is no motion in the fluid at t = 0 (we also assume
.
ak(0) = 0 later). Hence,

ΩU (z, 0) = ΩL(z, 0) = ΨU (z, 0) = ΨL(z, 0) = 0. (2.1)

2.2. Decay at ±∞
All quantities decay to zero at ±∞ and hence

ΨU (∞, t) = ΩU (∞, 0) = 0, ΨL(−∞, t) = ΩL(−∞, 0) = 0 (2.2)

2.3. Kinematic Boundary Condition

The (linearized) kinematic boundary condition is

vU (r, 0, t) = vL(r, 0, t) =
∂η

∂t
. (2.3)

Writing the velocity as a sum of potential and viscous parts,

∂φU

∂z

∣∣∣∣
z=0

+ vLv (r, 0, t) =
∂φL

∂z

∣∣∣∣
z=0

+ vLv (r, 0, t) =
∂η

∂t
. (2.4)

Subtracting the kinematic boundary condition for potential flow viz. Eq. 1.7 from 2.4 we
find that

vUv (r, 0, t) = vLv (r, 0, t) = 0 (2.5)

Thus,

ΨU (0, t) = ΨL(0, t) = 0 (2.6)

In deriving Eq. 2.6 we have used the identity J ′1(x) + J1(x)/x = J0(x). Also note that
Eq. 2.5 implies

∂vUv
∂r

∣∣∣∣
z=0

=
∂vLv
∂r

∣∣∣∣
z=0

. (2.7)
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2.4. Continuity of shear stress

The shear stress τrz is continuous at the linearised interface implying,

µU
(
∂vU

∂r
+
∂uU

∂z

) ∣∣∣∣
z=0

= µL
(
∂vL

∂r
+
∂uL

∂z

) ∣∣∣∣
z=0

. (2.8)

where uU = uUp + uUv , vU = vUp + vUv and likewise for the lower fluid. Combining now Eq.
2.7 and Eq. 2.8 we find,

µU

(
∂vUp
∂r

+
∂uUp
∂z

+
∂uUv
∂z

)∣∣∣∣
z=0

= µL

(
∂vLp
∂r

+
∂uLp
∂z

+
∂uLv
∂z

)∣∣∣∣
z=0

. (2.9)

Eq. 2.9 can be used to relate the vorticity on either sides of the interface at z = 0. As the
interface acts as a source of vorticity, the vorticity field is discontinuous at the linearised
interface z = 0. The potential part of the flow satisfies

∂uUp
∂z

=
∂vUp
∂r

,
∂uLp
∂z

=
∂vLp
∂r

, (2.10)

everywhere in the flow. This can be used in Eq. 2.9 which simplifies to,

µU

(
2
∂vUp
∂r

+
∂uUv
∂z

)∣∣∣∣
z=0

= µL

(
2
∂vLp
∂r

+
∂uLv
∂z

)∣∣∣∣
z=0

(2.11)

We now evaluate the following expression utilising Eq. 2.11.(
µUωUθ − µLωLθ

) ∣∣∣∣
z=0

= µU
(
∂uUv
∂z
− ∂vUv

∂r

) ∣∣∣∣
z=0

− µL
(
∂uLv
∂z
− ∂vLv

∂r

) ∣∣∣∣
z=0

(2.12)

Using Eq. 2.7, Eq. 2.12 can be simplified to obtain(
µUΩU (0, t)− µLΩL(0, t)

)
J1(kr) =

(
µU

∂uUv
∂z
− µL ∂u

L
v

∂z

) ∣∣∣∣
z=0

(2.13)

Using Eq. 2.11 to simplify the right hand side of Eq. 2.14, we obtain

(
µUΩU (0, t)− µLΩL(0, t)

)
J1(kr) = 2

(
µL

∂vLp
∂r
− µU

∂vUp
∂r

)∣∣∣∣
z=0

= 2

(
µL

∂2φLp
∂r∂z

− µU
∂2φUp
∂r∂z

)∣∣∣∣
z=0

(2.14)

Eq. 2.14 can be further simplified to,

µUΩU (0, t)− µLΩL(0, t) = −2k(µL − µU )
.
ak(t) (2.15)

where we have used the relation dJ0(x)
dx = −J1(x) to eliminate the radial dependence from

both sides.

2.5. Continuity of tangential velocities

It is clear that the tangential velocities are not continuous at z = 0 for potential flow.
Imposing the continuity of tangential velocities at the linearised interface implies,(

∂φUp
∂r

+
∂ψUv
∂z

)∣∣∣∣
z=0

=

(
∂φLp
∂r

+
∂ψLv
∂z

)∣∣∣∣
z=0

(2.16)
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Using expressions derived earlier, this can be written as

.
ak(t) +

∂ΨU

∂z
(0, t) = −.ak(t) +

∂ΨL

∂z
(0, t) (2.17)

where we have used dJ0(x)
dx = −J1(x). Eq. 2.17 can be rearranged to obtain

∂ΨL

∂z
(0, t)− ∂ΨU

∂z
(0, t) = 2

.
ak(t). (2.18)

3. Laplace Transforms

3.1. Equations in the Laplace domain

Eqs. 1.19 and 1.21 are easily solved in the Laplace domain. We define the Laplace
transform of Ω(z, t) and Ψ(z, t) as

L (Ω(z, t)) ≡ Ω̃(z, s) =

∫ ∞
0

Ω(z, t) exp[−st]dt, Ψ̃(z, s) ≡
∫ ∞
0

Ψ(z, t) exp[−st]dt.

Note that all quantities with a tilde on top are in the Laplace domain. The Laplace
transform of Eqs. 1.19 leads to,

∂2Ψ̃U

∂z2
− k2Ψ̃U = Ω̃U (z, s),

∂2Ψ̃L

∂z2
− k2Ψ̃L = Ω̃L(z, s). (3.1)

Laplace transforming Eqs. 1.21 and using initial conditions in Eq. 2.1, we obtain

∂2Ω̃U (z, s)

∂z2
−
(
k2 +

s

νU

)
Ω̃U (z, s) = 0

∂2Ω̃L(z, s)

∂z2
−
(
k2 +

s

νL

)
Ω̃L(z, s) = 0 (3.2)

Laplace transform of the viscous contribution to pressure in Eq. 1.23 leads to

1

ρL
∂p̃Lv
∂z

= kJ0(kr)
[
−νLΩ̃L + sΨ̃L

]
(3.3)

where ΨL(z, 0) = 0 is taken as initial condition. Similarly we can find an expression for
pressure for the upper fluid,

1

ρU
∂p̃Uv
∂z

= kJ0(kr)
[
−νU Ω̃U + sΨ̃U

]
(3.4)

Laplace transforming Eqs. 2.2, 2.6, 2.15 and 2.18, we obtain

Ψ̃(∞, s) = Ω̃U (∞, 0) = 0, Ψ̃L(−∞, t) = Ω̃L(−∞, 0) = 0 (3.5)

µU Ω̃U (0, s)− µLΩ̃L(0, s) = −2k(µL − µU )L (
.
ak(t)) , (3.6)

∂Ψ̃L

∂z
(0, s)− ∂Ψ̃U

∂z
(0, s) = 2L (

.
ak(t)) , (3.7)

Ψ̃U (0, s) = Ψ̃L(0, s) = 0. (3.8)

3.2. Solution in Laplace Domain

Our task is to first solve Eqs. 3.1, 3.2 using Eqs. 3.5 and 3.6. The solution of Eq. 3.2 is

Ω̃U (z, s) = ÃU (s) exp [−zλU ] , Ω̃L(z, s) = ÃL(s) exp [zλL] . (3.9)



Notes 7

Here AL(s) and AU (s) are constants of integration and following Prosperetti (1981), we
define λU ≡

√
k2 + s

νU
and so on. Eqs. 3.1 are solved using 3.5 and 3.6 to obtain,

Ψ̃U (z, s) =
ÃU (s)

λ2U − k2
(exp[−zλU ]− exp[−kz]) (3.10)

Ψ̃L(z, s) =
ÃL(s)

λ2L − k2
(exp[zλL]− exp[kz]) (3.11)

Eqs 3.7 and 3.8 can now be written as

µU ÃU (s)− µLÃL(s) = −2k(µL − µU )L[
.
ak(t)], (3.12)

ÃL(s)

k + λL
+
ÃU (s)

k + λU
= 2L[

.
ak(t)] (3.13)

Eqs. 3.12 and 3.13 can be solved for ÃL(s) and ÃU (s) to obtain,

ÃU (s) =
2L(

.
ak(t))(k + λU )(µUk + µLλL)

µL(k + λL) + µU (k + λU )
, (3.14)

and ÃL(s) =
2L(

.
ak(t))(k + λL)(µLk + µUλU )

µL(k + λL) + µU (k + λU )
. (3.15)

The expression for the viscous part of pressure can also be simplified further. Eq. 3.3 can
be written as

1

ρL
∂p̃Lv
∂z

= kJ0(kr)
[
−νLÃL(s) exp [zλL] + sΨ̃L

]
(3.16)

Eq. 3.11 can be rewritten as

sΨ̃L(z, s) = ÃL(s)νL (exp[zλL]− exp[kz]) (3.17)

Using Eq. 3.17 in 3.16 we obtain

1

ρL
∂p̃Lv
∂z

= −kJ0(kr)ÃL(s)νL exp[kz] (3.18)

which can be integrated from z′ = −∞ to z′ = z (z′ being dummy variable) to obtain

p̃Lv (r, z, s) = −µLÃL(s)J0(kr) exp[kz]. (3.19)

Using a similar procedure and integrating from z′ = z to z′ =∞ for the upper fluid,

p̃Uv (r, z, s) = µU ÃU (s)J0(kr) exp[−kz]. (3.20)

The potential part of the flow in Laplace domain is written below.

φ̃Up (r, z, s) = −k−1 exp[−kz]J0(kr)L (
.
ak(t)) , φ̃Lp (r, z, s) = k−1 exp[kz]J0(kr)L (

.
ak(t))

(3.21)

p̃Lp (r, z, s) = −ρL
(
sφ̃Lp − φLp (r, z, 0)

)
− ρLgz (3.22)

pUp (r, z, s) = −ρU
(
sφ̃Up − φUp (r, z, 0)

)
− ρUgz. (3.23)

3.3. Final assembly

We can now obtain an equation for ãk(s) by taking into account the jump in normal
stresses across the interface due to surface tension. This is (cf. Bush (2013)),

σUzz(r, 0, t)− σLzz(r, 0, t) = T (∇ · n). (3.24)
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where n is the local unit normal to an axisymmetric interface z = η(r, t) = ak(t)J0(kr).
The local radius of curvature is given by (Bush 2013),

∇ · n =
−rηr − r2ηrr
r2 (1 + η2r)

3/2
(3.25)

Eq. 3.25 when linearised for small-amplitude oscillations becomes,

−∇ · n ≈ ηrr +
1

r
ηr = ak(t)

(
d2J0
dr2

+
1

r

dJ0
dr

)
= −k2ak(t)J0(kr). (3.26)

Eq. 3.24 and 3.26 can be combined to obtain,

pL(r, 0, t)− pU (r, 0, t) + 2µU
∂vU

∂z

∣∣∣∣
(r,0,t)

− 2µL
∂vL

∂z

∣∣∣∣
(r,0,t)

= Tk2ak(t)J0(kr) (3.27)

Note that we have used the Newtonian constitutive relation σzz = −p+ 2µ∂v∂z . Using the
decompositon p = pp + pv and v = vp + vv for upper and lower fluids, Eq. 3.27 can be
rewritten after Laplace transformation as,

p̃Lp (r, 0, s) + p̃Lv (r, 0, s)− p̃Up (r, 0, s)− p̃Uv (r, 0, s) + 2µU
∂ṽUp
∂z

∣∣∣∣
(r,0,s)

+ 2µU
∂ṽUv
∂z

∣∣∣∣
(r,0,s)

− 2µL
∂ṽLp
∂z

∣∣∣∣
(r,0,s)

− 2µL
∂ṽLv
∂z

∣∣∣∣
(r,0,s)

= Tk2L(ak(t))J0(kr) (3.28)

From Eqs. 3.22 and 3.23 we have

p̃Lp (r, 0, s) = −ρL
(
sφ̃Lp − φLl (r, 0, 0)

)
− ρLgJ0(kr)L(ak(t))

= ρL
[
−sk−1J0(kr)L(

.
ak(t)) + k−1J0(kr)

.
ak(0)

]
− ρLgJ0(kr)L(ak(t))

(3.29)

Similarly,

p̃Up (r, 0, s) = −ρU
(
sφ̃Up − φUl (r, 0, 0)

)
− ρUgJ0(kr)L(ak(t))

= ρU
[
sk−1J0(kr)L(

.
ak(t))− k−1J0(kr)

.
ak(0)

]
− ρUgJ0(kr)L(ak(t))(3.30)

From Eq. 3.19 and 3.20, we obtain

p̃Lv (r, 0, t)− p̃Uv (r, 0, t) = −
(
µLÃL + µU ÃU

)
J0(kr) (3.31)

Also,

2µU
∂ṽUp
∂z

∣∣∣∣
z=0

− 2µL
∂ṽLp
∂z

∣∣∣∣
z=0

= −2k(µU + µL)J0(kr)L(
.
ak(t)) (3.32)

It can be shown that

ṽLv = −kΨ̃L(z, s)J0(kr) (3.33)

from which we obtain

2µU
∂ṽUv
∂z

∣∣∣∣
z=0

− 2µL
∂ṽLv
∂z

∣∣∣∣
z=0

= −2kµU
∂Ψ̃U

∂z

∣∣∣∣
z=0

J0(kr) + 2kµL
∂Ψ̃L

∂z

∣∣∣∣
z=0

J0(kr)

= 2kJ0(kr)

(
µU

λU + k
ÃU (s) +

µL

λL + k
ÃL(s)

)
(3.34)
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In the final assembly, we substitute expressions from Eqs. 3.29, 3.30, 3.31, 3.32 and 3.34
into Eq. 3.28 and divide throughout by J0(kr) to obtain,

−(ρL + ρU )k−1s [sãk(s)− ak(0)] +
(
ρL + ρU

)
k−1

.
ak(0)−

(
ρL − ρU

)
gãk(s)

−
(
µLÃL + µU ÃU

)
− 2k

(
µU + µL

)
[sãk(s)− ak(0)]

+2k

(
µU ÃU

λU + k
+

µLÃL

λL + k

)
= Tk2ãk(s) (3.35)

which can be rewritten as,

(ρL + ρU )s2ãk − (ρL + ρU )sak(0) + 2k2
(
µU + µL

)
sãk −

(
ρL + ρU

) .
ak(0)− 2k2

(
µU + µL

)
ak(0)

+
[
(ρL − ρU )gk + Tk3

]
ãk + k

(
µLÃL + µU ÃU

)
− 2k2

(
µU ÃU

λU + k
+

µLÃL

λL + k

)
= 0

(3.36)

We define ξ(s) and ζ(s) from Eqs. 3.14 and 3.15 as

ÃU (s) = ζ(s)(sãk − ak(0))

ÃL(s) = ξ(s)(sãk − ak(0)) (3.37)

Thus

ζ(s) ≡ 2(k + λU )(µUk + µLλL)

µL(k + λL) + µU (k + λU )
, ξ(s) ≡ 2(k + λL)(µLk + µUλU )

µL(k + λL) + µU (k + λU )
(3.38)

For this study, we will consider
.
ak(0) = 0. Hence using Eqs. 3.37, Eq. 3.36 can be

rewritten as[(
ρU + ρL

)
s2 + 2k2

(
µU + µL

)
s+

(
ρL − ρU

)
gk + Tk3 + k

(
µLξ + µUζ

)
s

−2k2
(

µUζ

λU + k
+

µLξ

λL + k

)
s

]
ãk(s) =

[
(ρL + ρU )s+ 2k2

(
µU + µL

)
+k
(
µLξ + µUζ

)
− 2k2

(
µUζ

λU + k
+

µLξ

λL + k

)]
ak(0) (3.39)

which can be expressed as

ãk(s) =

[
s+ 1

ρU+ρL

{
2k2(µU + µL) + k(µUζ + µLξ)− 2k2

(
µUζ
λU+k

+ µLξ
λL+k

)}]
s2 + 1

ρU+ρL

{
2k2(µU + µL) + k(µUζ + µLξ)− 2k2

(
µUζ
λU+k

+ µLξ
λL+k

)}
s+ ω2

0

ak(0)

(3.40)

Thus we can write

ãk(s) =
s+ Λ(s)

s2 + Λ(s)s+ ω2
0

ak(0) (3.41)

in a form analogous to that obtained in Prosperetti (1981), where

ω2
0 = gk

(
ρL − ρU

ρL + ρU

)
+

Tk3

ρL + ρU
(3.42)
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and,

Λ(s) =
1

ρU + ρL

{
2k2(µU + µL) + k(µUζ + µLξ)− 2k2

(
µUζ

λU + k
+

µLξ

λL + k

)}
(3.43)

3.4. Analytical expressions for νL = νU

Analytical expressions are possible (Chandrasekhar 1961; Menikoff et al. 1978; Pros-
peretti 1981) in the limit of equal kinematic viscosities of both fluids. In this limit
λL = λU = λ, and we obtain

ζ(s) =
2(ρUk + ρLλ)

ρL + ρU
, ξ(s) =

2(ρLk + ρUλ)

ρL + ρU
. (3.44)

3.4.1. Amplitude
Eq. 3.40, can now be written as

ãk(s) =

{
s+ 2νk2

ρL+ρU

[ (
ρL + ρU

)
+ 1

2k

(
ρLξ + ρUζ

)
−
(
ρLξ+ρUζ
λ+k

)]}
ak(0)

s2 + 2νk2

ρL+ρU

[
(ρL + ρU ) + 1

2k (ρLξ + ρUζ)−
(
ρLξ+ρUζ
λ+k

)]
s+ ω2

0

(3.45)

It is algebraically easier to invert this expression post non-dimensionalisation as follows

âk ≡
ãk(s)ω0

a0
, q ≡ s

ω0
, θ ≡ νk2

ω0
, ∆ ≡ ρL

ρU
. (3.46)

Using these Eq. 3.45 can be simplified and written as

âk(q) =
1

q

[
1− (1 +∆)2

G̃(q)

]
(3.47)

G̃(q) = (1 +∆)2
[
q2 + 2θq + 2θq

1 +∆2

(1 +∆)2
+ 4q

√
θ(q + θ)

∆

(1 +∆)2
− 4θ3/2

√
q + θ

1 +∆2

(1 +∆)2

−8θ(q + θ)
∆

(1 +∆)2
+ 4θ2

1 +∆2

(1 +∆)2
+ 8θ3/2

√
q + θ

∆

(1 +∆)2
+ 1

]
In order to compare our final expression with Prosperetti (1981), we introduce the non-

dimensional parameter β ≡ ρUρL

(ρL+ρU )2
= ∆

(1+∆)2 . In terms of β, the expression for G̃(q)

becomes

G̃(q) = (1 +∆)2
[
(q + θ)2 + 2θ(1− 6β)(q + θ)− 4θ3/2(1− 3β)

√
q + θ

+ 4θ1/2β(q + θ)3/2 + θ2(1− 4β) + 1
]

(3.48)

Further define

Γ̃ (q) ≡
[
q2 + 2θ(1− 6β)q − 4θ3/2(1− 3β)

√
q + 4θ1/2βq3/2 + θ2(1− 4β) + 1

]−1
(3.49)

using which we can write Eq. 3.47 as

âk(q) =
1

q

(
1− Γ̃ (q + θ)

)
(3.50)
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In order to invert the above, we non-dimensionalise the following Laplace transform,

ãk(s) =

∫ ∞
0

exp[−st] ak(t) dt (3.51)

by

âk ≡
ãk(s)ω0

ak(0)
, āk ≡

ak(t)

ak(0)
, τ = tω0 (3.52)

to obtain

âk(q) =

∫ ∞
0

exp[−qτ ] āk(τ) dτ (3.53)

The inversion of Eq. 3.50 is

āk(τ) = 1−
∫ τ

0

exp[−θm]Γ (m)dm (3.54)

where Γ (τ) and Γ̃ (q) are non-dimensionalised Laplace transform pairs and m is a dummy
variable. Eq. 3.54 can be further evaluated once Γ (m) is known. For this we need to invert
Eq. 3.49. Using h ≡ −√q, we transform this equation into a quartic,

Γ̃ =
1

h4 − 4θ1/2βh3 + 2θ(1− 6β)h2 + 4θ3/2(1− 3β)h+ θ2(1− 4β) + 1

(3.55)

The denominator is the same quartic which was obtained by Prosperetti (1981) earlier.
Define P (h) as

P (h) ≡ h4 − 4θ1/2βh3 + 2θ(1− 6β)h2 + 4θ3/2(1− 3β)h+ θ2(1− 4β) + 1 (3.56)

Let the roots of the quartic be hi such that P (h) =
∑4
i=1 (h− hi) and using the partial

fraction decomposition P (h)−1 =
∑4
i=0Ai(h− hi)−1, Eq. 3.55 can be written as

Γ̃ (q) =

4∑
i=1

−Ai√
q + hi

(3.57)

Eq. 3.57 can be inverted to obtain a non-dimensional time-domain expression
(Abramowitz & Segun 1970) (page 1023)

Γ (τ) =

4∑
i=1

−Ai
[

1√
πτ
− hi exp

[
h2i τ
]

Erfc
[
hi
√
τ
]]

(3.58)

Substituting this in Eq. 3.54, and using the fact that
∑4
i=1Ai = 0 we obtain

āk(τ) = 1−
4∑
i=1

hiAi

∫ τ

0

exp
[
(h2i − θ)m

]
Erfc

[
hi
√
m
]
dm (3.59)

where Erfc is the complementary error function. We need the following result,

∫ τ

0

exp
[
(h2i − θ)m

]
Erfc

(
hi
√
m
)
dm =

1− hiErf (
√
θτ)√

θ
− exp[(h2i − θ)τ ]Erfc (hi

√
τ)

θ − h2i
(3.60)
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Substituting Eq. 3.60 into 3.59, we obtain

āk(τ) = 1−
4∑
i=1

hiAi
θ − h2i

+ θ−1/2Erf
(√

θτ
) 4∑
i=1

h2iAi
θ − h2i

+

4∑
i=1

Aihi exp[(h2i − θ)τ ]Erfc (zi
√
τ)

θ − h2i
(3.61)

The following can be proven (for β = 0, they reduce to the one fluid expressions given
by Prosperetti (1976))

4∑
i=1

Aihi
θ − h2i

=
4θ2(1− 4β) + 1

8θ2(1− 4β) + 1
,

4∑
i=1

Aih
2
i

θ − h2i
=
−4θ5/2(1− 4β)

8θ2(1− 4β) + 1
. (3.62)

Using these the first two terms in Eq. 3.61 can be combined as

āk(τ) =
4θ2 (1− 4β)

8θ2 (1− 4β) + 1
Erfc

(√
θτ
)

+

4∑
i=1

Aihi exp[(h2i − θ)τ ]Erfc (hi
√
τ)

θ − h2i
(3.63)

We will now re-dimensionalise our equation and write the final answer

ak(t)

ak(0)
=

4(νk2)2 (1− 4β)

8(νk2)2 (1− 4β) + ω2
0

Erfc
(√

νk2t
)

+

4∑
i=1

Âiĥiω
2
0 exp[(ĥ2i − νk2)t]Erfc (ĥi

√
t)

νk2 − ĥ2i

(3.64a)

where ĥi ≡ hi
√
ω0 is the root of the equation

ĥ4 − 4(νk2)1/2βĥ3 + 2(νk2)(1− 6β)ĥ2 + 4(νk2)3/2(1− 3β)ĥ+ (νk2)2(1− 4β) + ω2
0 = 0

Note that Ai ≡ Âiω3/2
0 as Ai appears in the dimensional equation

ω2
0

ĥ4 − 4(νk2)1/2βĥ3 + 2(νk2)(1− 6β)ĥ2 + 4(νk2)3/2(1− 3β)ĥ+ (νk2)2(1− 4β) + ω2
0

=

4∑
i=0

Ai
√
ω0

ĥ− ĥi
=

4∑
i=0

Âiω
2
0

ĥ− ĥi
(3.65)

Finally note that if we know the roots ĥi, Âi for i = 1 . . . 4 can be calculated using the
partial fractions formula

Â1 =
((
ĥ1 − ĥ2

)(
ĥ1 − ĥ3

)(
ĥ1 − ĥ4

))−1
(3.66)

Other formulae for Â2, Â3 and Â4 arise similarly.

3.4.2. Vorticity
Thus the vorticity field becomes

Ω̃U (z, s) =
2L(

.
ak(t))(ρUk + ρL

√
k2 + s/ν)

ρL + ρU
exp

[
−z
√
k2 + s/ν

]
(3.67)
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With the help of following inverse Laplace Transform (see Abramowitz & Segun (1970),
page no. 1026)

L−1
[
s

n−1
2 exp[−α

√
s]
]

=
exp[−α

2

4t ]

2n
√
πtn+1

Hn

(
α

2
√
t

)
, (3.68)

and the first shifting theorem, Eq. 3.67 becomes

Ω̃U (z, s) =

(
ν−1/2

ρU + ρL

)
L (

.
ak(t))

[
kρUL

z exp
[
−
(
νk2t+ z2

4νt

)]
√
πt3


+
ρL

2
L

exp
[
−
(
νk2t+ z2

4νt

)]
√
πt3

H2

(
z

2
√
νt

)] (3.69)

where Hi(x) (i = 1, 2 . . .) are the Hermite polynomials with H1(x) = 2x and H2(x) ≡
4x2 − 2 (Abramowitz & Segun 1970). The linearity of the Laplace transform together
with the convolution theorem allows us to invert Eq. 3.69 and obtain,

ΩU (z, t) =

(
ν−1/2

ρU + ρL

)[∫ t

0

dm

.
ak(m) exp

[
−
(
νk2(t−m) + z2

4ν(t−m)

)]
√
π(t−m)3

(
zkρU

+
ρL

2
H2

(
z

2
√
ν(t−m)

))]

(3.70a)

We can thus write an expression for the vorticity in the upper fluid

ωUθ (r, z, t) = ΩU (z, t)J1(kr), (3.71)

where Eq. 3.69 gives the expression for ΩU (r, z, t). A similar expression can be obtained
for the lower fluid as

ΩL(z, t) =

(
ν−1/2

ρU + ρL

)[∫ t

0

dm

.
ak(m) exp

[
−
(
νk2(t−m) + z2

4ν(t−m)

)]
√
π(t−m)3

(
− zkρL

+
ρU

2
H2

(
−z

2
√
ν(t−m)

))]

(3.72a)
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3.4.3. Pressure
We present here an expression by inverting the viscous part of pressure. The inversion

of the potential part is easy and is not presented here. From Eq. 3.19, we have

p̃Lv (r, z, s) = −µLÃL(s)J0(kr) exp[kz]. (3.73)

In order to invert Eq. 3.73, we need to simply invert AL(s), which from Eqs. 3.37 & 3.44
has the expression,

ÃL(s) = ξ(s) (sãk(s)− ak(0))

=
2
(
ρLk + ρUλ

)
ρL + ρU

L[
.
ak(t)]

=
2ρLk

ρL + ρU
L[
.
ak(t)] +

2ρU

ρL + ρU

√
k2 + s/ν (sãk(s)− ak(0))

≡ ÃL1 (s) + ÃL2 (s) (3.74)

Note that in defining ÃL2 (s), we have used the definition of λ. ÃL1 (s) in Eq. 3.74 is
directly invertible. We provide the algebra for inverting ÃL2 (s). The algebra is easier to
do in non-dimensional space. Using Eq. 3.46 we obtain

ÃL2 (q) =
2ρUak(0)

ρL + ρU

√
ω0

ν

√
q + θ (qâ− 1) (3.75)

Using Eq. 3.50, Eq. 3.75 can be written as

ÃL2 (q) = −2ρUak(0)

ρL + ρU

√
ω0

ν

√
q + θΓ̃ (q + θ) = −2ρUak(0)

ρL + ρU

√
ω0

ν
M̃(q + θ) (3.76)

where M̃(q) ≡ √qΓ̃ (q). With the help of first shifting theorem, we can invert 3.76 to
obtain

AL2 (τ) = −2ρUak(0)

ρL + ρU

√
ω0

ν
exp[−θτ ]M(τ) (3.77)

whereM(τ), M̃(q) andAL2 (τ), ÃL2 (q) are Laplace transform pairs. Using h = −√q, similar
to Eq. 3.55 we can write,

M̃ =
−h

h4 − 4θ1/2βh3 + 2θ(1− 6β)h2 + 4θ3/2(1− 3β)h+ θ2(1− 4β) + 1
=
−h
P (h)

.(3.78)

Using the partial fraction decomposition −hP (h)−1 =
∑4
i=1Bi(h− hi)−1, we obtain

M̃(q) =

4∑
i=1

−Bi√
q + hi

(3.79)

Using Eq. 3.58 in Eq. 3.79, we obtain

M(τ) =

4∑
i=1

−Bi
[

1√
πτ
− hi exp

[
h2i τ
]

Erfc
[
hi
√
τ
]]

(3.80)

Substituting this in expression 3.77 and using
∑4
i=Bi = 0, we obtain

AL2 (τ) = −2ρUak(0)

ρL + ρU

√
ω0

ν
exp[−θτ ]

4∑
i=1

Bihi exp
[
h2i τ
]

Erfc
[
hi
√
τ
]

(3.81)
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Note that AL2 (τ) is dimensionless and hence the dimensional version of it viz. AL2d(t) ≡
AL2 (τ)ω0 can be written as

AL2d(t)

ω0
= −2ρUak(0)

ρL + ρU

√
ω0

ν
exp[−νk2t]

4∑
i=1

B̂iĥiω
1/2
0 exp

[
ĥ2i t
]

Erfc
[
ĥi
√
t
]

(3.82)

where similar to earlier algebra, Bi ≡ B̂iω0 as B̂i appears in the dimensional equation

−ĥω3/2
0

ĥ4 − 4(νk2)1/2βĥ3 + 2(νk2)(1− 6β)ĥ2 + 4(νk2)3/2(1− 3β)ĥ+ (νk2)2(1− 4β) + ω2
0

=

4∑
i=0

Bi
√
ω0

ĥ− ĥi
=

4∑
i=0

B̂iω
3/2
0

ĥ− ĥi
(3.83)

and ĥ = h
√
ω0. The expression for the viscous part of pressure in the lower fluid in time

domain can be written as

pLv (r, z, t) = −µLJ0(kr) exp[kz]
(
AL1 (t) +AL2d(t)

)
(3.84)

which can be rewritten as

pLv (r, z, t)

µLω0
= −J0(kr) exp[kz]

[
2ρLkω−10

ρL + ρU
.
ak(t)− 2ρUak(0)ω

1/2
0 ν−1/2

ρL + ρU

exp[−νk2t]
4∑
i=1

B̂iĥiω
1/2
0 exp

[
ĥ2i t
]

Erfc
[
ĥi
√
t
]]
. (3.85a)

where ĥi are the roots of the equation,

ĥ4 − 4(νk2)1/2βĥ3 + 2(νk2)(1− 6β)ĥ2 + 4(νk2)3/2(1− 3β)ĥ+ (νk2)2(1− 4β) + ω2
0 = 0

Bi’s can be evaluated using partial fractions. A similar expression for viscous part of
pressure can be obtained for the upper fluid.

4. Additional Data

Axisymmetric simulations were also conducted for pure capillary waves. Data collapse
using the scales suggested in Denner (2016) is shown below.
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Figure 1: Collapse of the amplitude versus time curves for pure capillary waves using
the time scale tvc proposed in Denner (2016). The non-dimensional wave number in our

axisymmetric DNS was chosen to be k̂ = 0.5 where k̂ is defined in Denner (2016). The
parameters for cases I, II and III are provided in the data sheet available at Farsoiya
et al. (2017).
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