
Supplementary material D. G. Crowdy

This document contains supplementary material associated with the J. Fluid Mech.
paper: “Perturbation analysis of subphase gas and meniscus curvature effects for lon-
gitudinal flows over superhydrophobic surfaces” by Darren Crowdy.

1 Geometry of a protruding meniscus

We assume that the meniscus protrudes into the upper working fluid; the details for
the depressed meniscus just require a few minor changes of sign but lead to the same
result. The depressed meniscus case requires that a “continuation” of Philip’s solution
into the region beneath the surfaces be effected, but this can be done in a natural
way by various reflection arguments. To avoid such technical issues, we focus on the
protruding interface case.

It is convenient to work within a complex variable formulation. The complexification
of the unit outward normal on the meniscus is

n 7→ −
[
z + iC

R

]
, (1)

where the symbol “7→” denotes the process of taking a vector in R2 and writing its
complex-valued analogue. From simple geometry and trigonometric arguments based
on Figure 1 we deduce that

b

C
= tan θ,

b

R
= sin θ,

C

R
= cos θ. (2)

To leading order in θ � 1,

z = x+ iθη(x), η(x) =
1

2b
(b2 − x2). (3)

To derive this, notice that the equation of the meniscus is

(z + iC)(z − iC) = R2. (4)

On setting z = x+ iy we find

x2 + y2 + 2yC = R2 − C2. (5)

On substitution from (2) this becomes

x2 + y2 +
2yb

tan θ
=

b2

sin2 θ
− b2

tan2 θ
=

b2

sin2 θ
(1− cos2 θ). (6)

Expanding in powers of θ produces

x2 + y2 +
2yb

θ
= b2 +O(θ2), (7)
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Figure 1: Single period window, in an (x, y) plane, for longitudinal flow in a channel of
height h with a periodic array of rectangular grooves of height H. The upper wall is a
no-slip surface. The meniscus protrusion angle θ is assumed to be small. Domain D is
occupied by fluid of viscosity η1, the grooveG by fluid of viscosity η2 with ε = η2/η1 � 1.

or

y =
θ

2b
(b2 − x2 − y2 +O(θ2)) =

θ

2b
(b2 − x2) +O(θ3). (8)

Hence, to leading order in θ, the meniscus is the parabola y = θη(x). It is worth noting
that

η′(x) = −x
b

(9)

and that, on the meniscus,

ds = [dzdz]1/2 = [(1 + iθη′(x))(1− iθη′(x))]1/2dx = dx+O(θ2). (10)

The linearized complex normal is

n 7→ −
[
z + iC

R

]
= −

[
i +

zθ

b

]
+O(θ2) = −

[
i +

xθ

b

]
+O(θ2). (11)

2 Slip length formula

We write Philip’s channel flow solution [3] in the form

wP = −Sy
2

2
+ ŵ, (12)

where the harmonic function ŵ is given by

ŵ = Im[h0(z)] (13)
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and where h0(z) is a known complex potential (see [1] for example). This solution is
relevant to a flat meniscus on which

∂ŵ

∂y
= 0 (14)

which is equivalent to
Re[h′0(x)] = 0, x ∈ R. (15)

If we define

P =
Sy

2
(h− y). (16)

it follows that

wP + P = −Sy2 +
Shy

2
+ Im[h0(z)], (17)

or, in terms of z and z,

wP + P =
S

4

[
z2 − 2zz + z2

]
+
Sh

4i
(z − z) + Im[h0(z)]. (18)

First note that, on the meniscus where z = x+ iy = x+ iθη(x),

wP (z, z) = ŵ(z, z) +O(θ2)

=
1

2i

[
h0(x+ iθη(x))− h0(x− iθη(x))

]
+O(θ2)

=
1

2i

[
h0(x)− h0(x) + iθη(x)h′0(x) + iθη(x)h0

′
(x)
]

+O(θ2)

= ŵ(x, 0) + θη(x)
∂ŵ

∂y
(x, 0) +O(θ2)

= ŵ(x, 0) +O(θ2),

(19)

where, in the third equality, we have used the Cauchy-Riemann equations and the fact
that ∂ŵ/∂y = 0 on y = 0.

Next, in complex notation, we find

∂(wP + P)

∂n
= Re

[
2
∂(wP + P)

∂z

{
−
[
i +

xθ

b

]}]
+O(θ2). (20)

It follows from (18) that

∂(wP + P)

∂z
=
S(z − z)

2
+
Sh

4i
+
h′0(z)

2i

= iSθη(x) +
Sh

4i
+

1

2i
(h′0(x) + iθη(x)h′′0(x)) +O(θ2)

=
Sh

4i
+
h′0(x)

2i
+ iθη(x)

(
S +

h′′0(x)

2i

)
+O(θ2).

(21)
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Hence

2
∂(wP + P)

∂z

{
−
[
i +

xθ

b

]}
= −2

{[
Sh

4
+
h′0(x)

2

]
− θη(x)

(
S +

h′′0(x)

2i

)
+
xθ

b

(
Sh

4i
+
h′0(x)

2i

)}
+O(θ2).

(22)

On taking the real part,

∂(wP + P)

∂n
= −Sh

2
+ Re

[
2θ

[
η(x)

(
S +

h′′0(x)

2i

)
− x

b

h′0(x)

2i

]]}
+O(θ2)

= −Sh
2

+ 2Sθη(x) + 2θRe

[
d

dx

[
η(x)h′0(x)

2i

]]
+O(θ2),

(23)

where we have used both (9) and (15). On substitution of these quantities into the
expression for the slip length correction given in the main body of the paper we find

ah2Sλ

2
=

1

S

∫ b

−b
ŵ(x, 0)

[
Sh

2
− 2Sθη(x)− 2θRe

[
d

dx

[
η(x)h′0(x)

2i

]]]
dx+O(θ2). (24)

On writing
λ = λP + θλ(θ) +O(θ2) (25)

and substituting into the left hand side of (24) we find, at leading order,

ah2SλP
2

=

∫ b

−b

h

2
ŵ(x, 0)dx, or λP =

1

ahS

∫ b

−b
ŵ(x, 0)dx, (26)

and, to first order in θ,

ah2Sλ(θ)

2
= −2

∫ b

−b
ŵ(x, 0)

{
η(x) +

1

S
Re

[
d

dx

[
η(x)h′0(x)

2i

]]}
dx (27)

or

λ(θ) = − 4

ah2S

[∫ b

−b
ŵ(x, 0)η(x)dx+

1

S

∫ b

−b
ŵ(x, 0)

d

dx

[
η(x)Re

[
h′0(x)

2i

]]
dx

]
= − 4

ah2S

[∫ b

−b
ŵ(x, 0)η(x)dx− 1

S

∫ b

−b

∂ŵ(x, 0)

∂x
η(x)Re

[
h′0(x)

2i

]
dx

] (28)

where, in the last equality, we have used integration by parts and the facts that both η
and ŵ vanish at x = ±b. But

ŵ(x, 0) =
h0(x)− h0(x)

2i
,

∂ŵ(x, 0)

∂x
=
h′0(x)− h0

′
(x)

2i
(29)

and

Re

[
h′0(x)

2i

]
=

1

2

[
h′0(x)

2i
− h0

′
(x)

2i

]
=

1

2

∂ŵ(x, 0)

∂x
. (30)
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Finally we arrive at

λ(θ) = − 4

ah2S

∫ b

−b
η(x)

[
ŵ(x, 0)− 1

2S

(
∂ŵ(x, 0)

∂x

)2
]
dx = λ

(θ)
1 + λ

(θ)
2 , (31)

where we separate the final result into the two contributions

λ
(θ)
1 ≡ −

2

ah2S

∫ b

−b
η(x)

[
ŵ(x, 0)− 1

S

(
∂ŵ(x, 0)

∂x

)2
]
dx,

λ
(θ)
2 ≡ −

2

ah2S

∫ b

−b
η(x)ŵ(x, 0)dx.

(32)

The quantity ∂ŵ(x, 0)/∂x has inverse square root singularities at the integration end-

points x = ±b but the integrand in the expression for λ
(θ)
1 is nevertheless regular since

η(x) has simple zeros at those points.
From (12) we notice that, on y = 0, ŵ(x, 0) = wP (x, 0) and ∂ŵ(x, 0)/∂x =

∂wP (x, 0)/∂x which leads, after substitution of the expression (3) for η(x), to the for-
mulas reported in the main paper.

Sbragaglia and Prosperetti [2] state their (non-dimensionalized) slip length in the
form

λ(L) = λ(0,L) + ε̃
[
λ

(1,L)
1 + λ

(1,L)
2

]
+ o(ε̃), (33)

where the leading order slip length is also decomposed into two parts. In their paper all
lengths are non-dimensionalized with respect to a∗/π. The non-dimensional expansion
parameter ε̃ is related to angle θ via

ε̃∗ =
1

2R∗
≈ − θ

2b∗
=

π

a∗
ε̃, (34)

where we have added asterisks to emphasize dimensional quantities. We have also added
a minus sign in front of angle θ because a depressed meniscus (rather than a protruding
one) was studied in [2]. It follows that the non-dimensional expansion parameters used
here and in [2] are related by

ε̃ = − a∗θ

2πb∗
. (35)

The contribution λ
(1)
2 found here precisely corresponds to the quantity λ

(1,L)
2 found by

[2] after appropriate non-dimensionalization. Indeed, it can be verified that

ε̃λ
(1,L)
2 = −θ

( π
a∗

)
λ

(1)∗
2 , (36)

where, on the right hand side, we have non-dimensionalized our result λ
(1)∗
2 in the same

way adopted in [2]. To check (36), on substituting from (35), it becomes

a∗θ

2πb∗
λ

(1,L)
2 = −θ

( π
a∗

)
λ

(1)∗
2 (37)
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implying that

λ
(1,L)
2 =

π2

a∗2
(2b∗λ

(1)∗
2 ) =

π2

a∗2

[
2

a∗h∗2S

] ∫ b∗

−b∗
(b∗2 − x∗2)w∗P (x, 0)dx∗. (38)

With the non-dimensionalizations used in [2],

b∗ =
a∗

π
b, h∗ =

a∗

π
h, x∗ =

a∗

π
x, w∗P (x, 0) = S

(
a∗

π

)2

w̃P (x, 0), (39)

and (38) reduces to

λ
(1,L)
2 =

2

πh2

∫ b

−b
(b2 − x2)w̃P (x, 0)dx (40)

which is precisely formula (42) of [2] (once we rename h as L and b as c). It follows
similarly that

λ
(1,L)
1 =

2

πh2

∫ b

−b
(b2 − x2)

[
w̃P (x, 0)−

(
∂w̃P (x, 0)

∂x

)2
]
dx, (41)

where, in previous work [2], this was computed from the numerical solution of a trun-
cated set of dual series equations.

3 Semi-infinite shear flow

In this section we show how to rederive, using reciprocity arguments, the integral ex-
pression for the first order slip length correction for semi-infinite shear flow (i.e. when
the channel height h→∞) derived in [2]; the latter paper used quite different methods.

The region D is again the region shown in Figure 1 but now with h → ∞. Since
there is no imposed pressure gradient Green’s second identity implies

0 =

∫ ∫
D

[
w∇2wP − wP∇2w

]
dA =

∮
∂D

[
w
∂wP
∂n
− wP

∂w

∂n

]
ds. (42)

The solution w is that for linear shear flow with unit shear rate γ̇ = 1 over the weakly
curved meniscus satisfying w = 0 on the no-slip surfaces with

∂w

∂n
= 0 (43)

on the meniscus. This solution wP is that for semi-infinite shear flow over a periodic
array of no-shear slots found by Philip [3]. As y →∞,

w → y + λ, wP → y + λP . (44)
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The quantity λ(θ) in the small-θ expansion

λ = λP + θλ(θ) +O(θ2) (45)

is to be found. On the interval x ∈ [−b, b] we have [3]

wP (x, 0) =
2a

π
cosh−1

[
cos(πx/2a)

cos(πb/2a)

]
, (46)

implying
∂wP
∂x

(x, 0) = − sin(πx/2a)

[cos2(πx/2a)− cos2(πb/2a)]1/2
. (47)

The associated slip length is

λP =
2a

π
log sec

(
πb

2a

)
. (48)

These formulas will be useful later.
Evaluation of the boundary integral in (42) gives

0 =

∫ −a
a

[(y + λ)− (y + λP ](−dx) +

∫
meniscus

[
w
∂wP
∂n
− wP

∂w

∂n

]
ds, (49)

where the first integral is the contribution as y →∞. It follows that

λ− λP = − 1

2a

∫
meniscus

w
∂wP
∂n

ds = − 1

2a

∫
meniscus

wP
∂wP
∂n

ds+O(θ2), (50)

where we have used (43).
To isolate λ(θ) it only remains to linearize the integral on the right hand side of (50).

Introducing the complex potential

wP (x, y) = Im[h0(z)] (51)

it follows from steps similar to those carried out earlier that

∂wP
∂n

= Re

[
−h′0(z) +

ixθh′0(z)

b

]
+O(θ2). (52)

Since Re[h′0(x)] = 0 then on the meniscus where z = x+ iθη(x) we find

∂wP
∂n

= Re

[
−iθηh′′0(x) +

ixθh′0(x)

b

]
+O(θ2) = Re

[
−iθ

d

dx
(ηh′0(x))

]
+O(θ2). (53)

On substitution into (50)

λ(θ) =
θ

2a

∫ b

−b
wP (x, 0)Re

[
θ

i

d

dx
(ηh′0(x))

]
. (54)
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But, from (30),

λ(θ) =
θ

2a

∫ b

−b
η

(
∂wP
∂x

)2

dx =
θ

2a

∫ b

−b
η(x)

sin2(πx/2a)

cos2(πx/2a)− cos2(πb/2a)
dx, (55)

where we have used (47).
On substituting for η(x) from (3), on use of some trigonometric double angle iden-

tities, a change of integration variable s = x/b and exploiting the even nature of the
integrand, we find

λ(θ) =
bδ

2

∫ 1

0

(1− s2)

[
1− cos(πsδ)

cos(πsδ)− cos(πδ)

]
ds =

bF (δ)

2
, δ =

b

a
, (56)

with F (δ) given explicitly by

F (δ) = δ

∫ 1

0

(1− x2)
[1− cos(xπδ)]dx

cos(xπδ)− cos(πδ)
. (57)

Finally, to rescale in order make a connection with [2] where the first order correction
to the slip length for this case is denoted by λ(1,∞), as in (36) we must have

ελ(1,∞) = −θ
(π
a

)
λ(θ) = −θ

(π
a

) bF (δ)

2
, (58)

where we have used (56) in the second equality. It follows that

ελ(1,∞)

2π
= −θ

(
b

a

)
F (δ)

4
= − b2

4Ra
F (δ) (59)

which is exactly the result found in equation (45) of [2].

4 High viscosity in the subphase groove

To illustrate the versatility of the theoretical approach of combining perturbation theory
with reciprocity ideas, we also include an analogous study of the case of high viscosity
contrast, i.e.,

ε� 1 (60)

so we now assume that the subphase fluid is much more viscous than the working
fluid. We will carry out a formal perturbation procedure in powers of 1/ε � 1. This
situation would be relevant to liquid-infused surfaces where the grooves are filled with
oil, say, with water serving as the working fluid. The work of Wexler et al [6] involves
a theoretical study of this scenario although the focus there was on the induced flow in
the subphase groove rather than the effective slip of the working fluid. The following
analysis therefore complements that prior work. Here we study only open ended grooves,
but the analysis can be generalized to other scenarios. In this section we also restrict
attention to flat menisci.
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4.1 Semi-infinite shear flow

Using w to denote the flow in the upper working fluid and W to denote the subphase
fluid velocity, we develop the expansions

w = w0 +
1

ε
w1 + . . . W = W0 +

1

ε
W1 + . . . (61)

On substitution into the boundary conditions on the meniscus we find

1

ε

[
∂w0

∂y
+

1

ε

∂w1

∂y
+ . . .

]
=
∂W0

∂y
+

1

ε

∂W1

∂y
+ . . . (62)

At leading order this gives
∂W0

∂y
= 0. (63)

The only consistent solution that also satisfies the no-slip condition on all the other
channel walls is

W0 = 0. (64)

Hence the leading order subphase velocity vanishes; it is too viscous to be moved by
the shear stress from the upper fluid implying

w0 = 0 (65)

which ensures continuity of velocity on the meniscus at leading order. The leading
order flow in the upper fluid, and satisfying the far-field shear condition, is therefore
the pure Couette flow:

w0 = γ̇y. (66)

At O(1/ε) the shear stress boundary condition (62) on the meniscus now implies

∂W1

∂y
=
∂w0

∂y
= γ̇ (67)

or, on use of the Cauchy-Riemann equations,

χ1 = γ̇x, (68)

where χ1 is the harmonic conjugate of W1 (recall that both w and W are harmonic).
At this order, continuity of velocity implies

w1 = W1, (69)

where the right hand side is known from the solution for W1 (to be found in §4.6).
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4.2 Pressure driven channel flow

A similar analysis pertains to pressure driven channel flow with the difference that now
the leading order flow in the upper fluid is the Poiseuille flow

w0 =
Sy(h− y)

2
. (70)

At O(1/ε) the shear stress boundary condition (62) on the meniscus now implies

∂W1

∂y
=
∂w0

∂y
=
Sh

2
(71)

or, on use of the Cauchy-Riemann equations,

χ1 =
Sh

2
x. (72)

At this order the continuity of velocity implies

w1 = W1, (73)

where the right hand side is known from the solution for W1 (which can be found by
adapting the methods of §4.6).

4.3 Reciprocal formulas for the slip length

Now we give the implications of this perturbation analysis when used in conjunction
with the reciprocity relations deriving from Green’s identity.

4.4 Semi-infinite channel flow

Green’s second identity with w1 and the comparison field given by the leading order
Couette flow w0 gives

0 =

∫ ∫
D

[
w1∇2w0 − w0∇2w1

]
dA =

∮
∂D

(
w1
∂w0

∂n
− w0

∂w1

∂n

)
ds (74)

which, after use of all the boundary conditions on w1, leads to

λ1 =
1

2aγ̇

∫ b

−b
w1dx =

1

2aγ̇

∫ b

−b
W1dx, (75)

where we have also used the condition (69).
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4.5 Pressure driven channel flow

Green’s second identity with w1 and the comparison field given by the leading order
Poiseuille flow w0 gives∫ ∫

D

[
w1∇2w0 − w0∇2w1

]
dA =

∮
∂D

(
w1
∂w0

∂n
− w0

∂w1

∂n

)
ds (76)

which, after use of all the boundary conditions on w1, leads to

SQ1 =

∫ b

−b
w1
∂w0

∂y
ds =

Sh

2

∫ b

−b
w1ds =

Sh

2

∫ b

−b
W1ds, (77)

where we have used (71) and (73) and where Q1 is the volume flux associated with w1,
i.e.,

Q1 ≡
∫ ∫

D

w1(x, y)dxdy =
h

2

[∫ b

−b
W1dx

]
. (78)

To deduce the correction to the slip length we set the total volume flux equal to the flux
Qeff through a channel, corresponding to the same pressure gradient, but now with a
flat meniscus satisfying the Navier-slip condition on the lower wall with slip parameter
λ, i.e.,

Qeff =
ah3S

6

(
1 +

3λ

h

)
=
ah3S

6

(
1 +

3(λ0 + ελ1 + . . . )

h

)
= Q0 + εQ1 + . . . (79)

Hence, at first order and on use of (78),

ah2Sλ1

2
=
h

2

[∫ b

−b
W1dx

]
, or λ1 =

1

ahS

[∫ b

−b
W1dx

]
. (80)

4.6 The solution for W1

To find the slip length correction we must find the complex potential

h1(z) = χ1 + iW1. (81)

On introduction of the composed complex potential

H1(ξ) ≡ h1(z(ξ)) = χ1 + iW1 (82)

we find from the no-slip condition on the three subphase walls of the rectangle, corre-
sponding to the real diameter ξ ∈ [−1, 1], that

H1(ξ) = H1(ξ). (83)

For ξ ∈ C+
ξ we have

Re[H1(ξ)] = Re[z(ξ)] = Cx(ξ, ξ), (84)
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where the constant C is

C =

{
γ̇, for shear flow,
Sh/2, for pressure driven flow.

(85)

Hence, for ξ ∈ C−ξ we have

Re[H1(ξ)] = Re[H1(ξ)] = Re[H1(ξ)] = Cx(ξ, ξ). (86)

This implies that

Re[H1(ξ)] =

{
Cx(ξ, ξ), ξ ∈ C+

ξ ,

Cx(ξ, ξ), ξ ∈ C−ξ .
(87)

On substitution of the series expansion

H1(ξ) = a0 +
∑
n≥1

anξ
n (88)

into (87) we find that

Re[a0] = p0, an = 2pn, n ≥ 1, (89)

where {pn} is the set of Laurent coefficients given by

pn = In + Jn (90)

with

In =
1

2πi

∫
C+

ξ

Cx(ξ, ξ)dξ

ξn+1
, Jn =

1

2πi

∫
C−

ξ

Cx(ξ, ξ)dξ

ξn+1
. (91)

By exploiting the result that for |ξ| = 1 then x(ξ, ξ) = x(ξ, ξ) it can be shown that

Jn = In (92)

implying that
pn = 2Re[In] (93)

and, hence, that

H1(ξ) = 2Re[I0] + 4
∑
n≥1

Re[In]ξn, (94)

where we have not added any purely imaginary constant in order that the no-slip
condition is satisfied at x = ±b. Now, for any integer n ≥ 1, integration by parts yields

In = − C

2πi

∫ b

−b

xdξ

ξn+1
=

C

2πin

∫ b

−b
xd

(
1

ξn

)
=

C

2πin

[
b((−1)n + 1)−

∫ b

−b

dx

ξn

]
(95)

and

In = − C

2πin

[
b((−1)n + 1)−

∫ b

−b
ξndx

]
, (96)

where we have used the fact that ξ = 1/ξ on the interval x ∈ [−b, b].
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4.7 Slip length correction

The leading order slip length is zero so it is the first order correction that is of interest.
For semi-infinite shear flow from (75) we have

λ1 =
1

2aγ̇

∫ b

−b
Im [H1(ξ)] dx =

1

2aγ̇

∫ b

−b
Im

[
2Re[I0] + 4

∑
n≥1

Re[In]ξn

]
dx. (97)

Hence

λ1 =
2

aγ̇

∑
n≥1

Re[In]Im

∫ b

−b
ξndx =

2

aγ̇C

∑
n≥1

Re[In]Im[2πinIn], (98)

where we have used (96) in the final step. Since Im[2πinIn] = Im[2πinIn] = Re[2πnIn]
we find

λ1 =
4π

aC2

∑
n≥1

nRe[In]2, C = γ̇, (99)

where In is given by formula (91) with C = γ̇.
Figure 2 shows a graph of this (normalized) slip length correction as a function of

aspect ratio of the groove for b/a = 0.5 together with the results given from the from
large-ε expansions of the slip lengths given by the models of [4] and [5].

For pressure-driven channel flow, from (80) the analogous formula is

λ1 =
4π

aC2

∑
n≥1

nRe[In]2, (100)

with In again given by formula (91) but now with C = Sh/2.
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Figure 2: Graph of the normalized slip length correction, for b/a = 0.5, as a function
of aspect ratio of the groove. Also shown are the results given by expanding, for large
ε, formulas derived from the models of [4] (dots) and [5] (crosses).
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