Dispersion of solute released from a sphere flowing in a microchannel:
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S1. STOCHASTIC SIMULATIONS

Besides the numerical integration of the axisymmetric Fokker-Planck equation,
we conduct stochastic simulations. Here, the trajectory of a single substance
molecule is obtained by integrating the molecule’s velocity which at time ¢ is given
by

v(t) =u(r(t)) + w(t) (S1)

where u(r(t)) is the fluid velocity at the particle position r(t). The velocity w(t)
is a random velocity which is drawn from a distribution of random numbers with

zero mean and a standard deviation o, = \/% with the time step At. The latter

relation can be directly obtained from the flucuation-dissipation theorem applied to
the overdamped motion of a massless particle. If a molecule hits the sphere surface,
the normal component of the incoming velocity is inverted such that the molecule is
reflected back into the fluid. If a molecule crosses the cylinder wall, the trajectory
stops. The intial position of the particle at ¢ = 0 is located on the sphere surface
with the prescribed 6. The azimuthal position ¢ is chosen randomly between 0 and
27 such that the full 3D Brownian simulations mimick the axisymmetric situation
considered by the finite volume scheme in the main text.

All results obtained from the Fokker-Planck equation in the main text have been
verified by these stochastic simulations and excellent agreement was found. Some
examples are provided in figure S1.
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FIG. S1. Analog of figures 2-5 in the main text with lines obtained from the numerical

solution of the Fokker-Planck equation and crosses from stochastic simulations.



S2. VARYING SPHERE RADIUS

The analogs of figures 2-7 in the main text for a sphere with radius R, = 0.6 are
presented in figure S2. In figure S3 we show in addition the mean residence time
and distribution width for R, = 0.8. All aspects mentioned in the main text remain
qualitatively similar, although the quantitative influence of the smaller sphere is, of
course, less pronounced.
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FIG. S2. Data for R, = 0.6
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FIG. S3. Data for R; = 0.8
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