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Appendix A. Averaging with describing functions

This appendix shows how to evaluate the expressions (3.4) for k¥ = 1, with the case
k = 2 following similarly. We substitute the definition of f; from (2.34a), and consider
only the j-th term of the summation in (3.4):
Cj 1

27w .
< / Q [Ajcj cos(wt + 1) + Ags; cos(wt + )] e @HHe1) gt (A1)
2 w/w Jo

We introduce the first change of variables

{aj = Ajcjcos i + Aas; cos o (A2)

bj = Aicjsingy + Aasjsin g

and the second change of variables

{CLJ‘:RJ‘COS’L/}]' {Rj: ,/G?-Fb? (A3)

bj = R;siny; ¥ = arg(a; +ib;)

Notice that we can rewrite the definition of R; by substituing the expression for a;,b;
from (A 2), obtaining equation (3.6). We trigonometrically expand the argument of Q' in
equation (A 1), and substitute first (A 2) and then (A 3). The expression (A 1) simplifies
to

¢ 1 27w (i)

2w /0 Q[R; cos(wt + ;)] e 1) dt (A4)
We first change the time variable to ¢ — ¢ —1); /w and then slide the interval of definition
of the integrand because it is periodic. We obtain

Cj 1
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We then expand the complex exponential in the integrand, take the constants out of the
integral, and divide and multiply by R;:
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27w
/ Q[R; cos(wt)] e™dt (A6)

We now observe that the term in the outer square brackets is the describing function of
Q defined in (2.4). From (A 3) we have that Rje~ "% = a; —ib;. The expression simplifies
to

(a; —ib; )—e“‘”G( ,w)et @) (A7)

where we have rewritten the describing function Q(R;,w) in terms of gain G' and phase
response ¢ as presented in equation (2.5). This is the contribution of the j-th burner.
The final expression of (3.4) is

Ny
. . . Cj i W .
(f cos(wt + 1)) + i{fr sin(wt + 1)) = »_(a; — ij)EJG(Rj, w)e! (P Hs @) ten) (A8)
j=1

The two averaged terms are the real and imaginary parts of (A 8). By substituting a;, b,
from (A 2) we obtain:

(f1 cos(wt + ¢1)) Z G(Rj,w) [A1c] cos ¢(R;,w) + Agcys;j cos(d(Rj,w) + ¢)] (A9a)
(f1 sin(wt + ¢1)) Z G(Rj,w Alc sin p(R;,w) + Azc;s;sin(¢p(R;,w) + )] (A 90b)
Similary for j = 2 we obtain

(facos(wt + ¢1)) =+ % Z G(R;,w) [Ags cos p(Rj,w) + Arcjs; cos(d(Rj,w) — ¢)] (A9c)

(fasin(wt + 1)) =+ % Z G(R;,w) [Ags sinp(R;j,w) + A1c;s;sin(¢p(R;,w) — ¢)] (A9d)

Finally, by substituting (A 9) in (3.3), we obtain the slow flow equations (3.5).

Appendix B. Sufficient condition for the existence of fixed points

This appendix proves the implication (3.15). We first introduce some simple mathe-
matical identities, and then provide the proof in §B.2.
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B.1. Mathematical identities
The following properties hold for any function f: R — R:

Ny Ny,
D EF(Ri(Az, A, =) =D 87 f (Ri(A1, As, ) (Bla)
j=1 j=1
Ny
> cos(20;)f(R;) =0 Ve, A=A, (B1b)
j=1
Ny, -
> sin(20;) f(R;) =0 p=d5, A1 =4 (B1c)
j=1
Ny N, N, Ny
YE=Y =7 . D=0 (B14)
j=1 j=1 j=1

where ¢; and s; are defined in (2.17).

B.2. Proof of (3.15)

The proof proceeds following these steps. In §B.2.1 we first prove that f, (4, A, k7/2)
is zero for all integer values of k. We then prove in §B.2.2 that fa,(A, A kn/2) —
fa,(A, A km/2) is zero. It follows that if also fa, (A, A, k7/2) + fa,(A, A, kn/2) is zero,
as is the hypothesis of the implication, then the individual terms, fa,(A, A, k7/2) and
fa,(A, A, km/2) also have to be zero. Then, all the three functions f,, fa,, fa, are zero,
and the point (A, A, kn/2) is therefore a fixed point.

B.2.1. First part: f, = 0

The function f,(A, A, ¢) is odd with respect to ¢. It follows that ¢ = 0 is a zero of
the function:

fo(A A 2kn) =0Vk e Z (B2)
By direct substitution, we can show that (B2) holds also at ¢ = £7/2 and ¢ = 7:
fo(A A kn/2) =0k € Z (B3)
We prove (B 3):
o for ¢ = m/2 by observing that R; is independent of j. The expression becomes

Ny
1 .
fo(A A £7m/2) =3 Z [(s? - cf) sing (A,w) — 2¢;s; cos ¢] G (A,w) (B4)
j=1
This equation (B4) can be split into two summations of cos26; and sin26,, which are
zero when summed over [0, 27] as can be deduced from (B 1d):
e for ¢ =7 in (B 3) we obtain

Ny
fo(A A, ) :% Z (s? — c?) sin (R, w)G (R, w)
=1
Jl N
=— §Zcos(29j)sin¢(Rj,w)G(Rj,w) (B5)
j=1

This summation vanishes by applying the property (B 1b).
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B.2.2. Second part: fa, — fa, =0
We now prove that
fa (A A km[2) — fa,(A A kT /2) =0Vk €Z (B6)

1) for ¢ = 0 by direct substitution and by exploiting (B1la); 2) for ¢ = =, by direct
substitution and exploiting (B 1a) for A; = A, in the resulting equation; for ¢ = 7/2 by
also applying (B 1¢) twice. We also observe that

Fa (A, A kr/2) = 0 Fa (A Ak /2) — fa, (A, A kn/2) = 0 B
fa, (A A km/2) = 0 fa, (A Ak /2) + fa, (A, A kT /2) = 0
This, together with (B6) and (B 3) implies that
P (A A RR/2) + fay (A Ak /2) =0 = f(A A kr/2)=0  (BS)

Appendix C. Conditions for the stability of fixed points

One can numerically calculate the amplitudes A®P of spinning solutions from equation
(3.16) and the amplitudes A" of standing solutions from equation (3.19). We can then
discuss the stability of these solutions by evaluating the eigenvalues of the Jacobian of
the system (3.5). If all eigenvalues are negative the point is an attractor, i.e. a stable
solution. Since the eigenvalues are invariant with respect to a change of variables, we
consider the new set of variables

2C = A1 + Ay Ai=C+D
(Cla)
2D = A; — A Ay =C—-D
This transformation maps the point (A1, Az, ) = (A, A, ¢) to the point (C,D,p) =
(4,0, ), and the reason we apply the transformation will be apparent later. By evaluating
the time derivative of (C1la) and substituting first (3.5) and then (C1b), we obtain the
slow flow in terms of the new variables:

(C 1)

1%
o _%C—i— Z; [ ((cf — s?)D—i—C) cos ¢ (Rj,w)+
¢jsj(C — D) cos (¢ (Rj,w) + ¢) + ¢;8;(C + D) cos(¢ (Rj,w) — )]G (R;,w) (C2a)
Ny
D = _%D + ij_l [((c5 — s7)C + D) cos ¢ (R;,w) +

¢js;(C — D) cos(¢ (Rj,w) + ¢) — ¢;8;(C + D) cos(¢ (Rj,w) — )]G (Rj,w) (C2b)

cisy (G poin(o (i) +9) = G psin(o (R~ ) ) |G (Rw) (C20)

We can rewrite the system (C2) in compact form, and study the gradients of fc, fp, fo
at the position of the fixed points found in §3.3, to obtain the Jacobian matrix J:

of of of
C' = fo(C,D, ) 9C 9D  op

o o o
D' = fp(C,D.y) J= % Y Y (C3)

¢ = 1,(C,D,yp) e Yo Y
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The eigenvalues of J will allow the stability of the fixed points to be assessed. In order
to evaluate this, we need to study the dependence of R; as a function of C, D, ¢. Applying
the change of variables (C1b) to the definition (3.6) of R;, and then setting D = 0, we
obtain

R; = C\/1+2¢jsjcosp (C4)

The derivatives of R; with respect to C, D, ¢ at a point (C,D = 0, ¢) are

88125 = /1 + 2¢js;cosp

OR;  _ ci=s]
oD - \/1+2c;s; cos ¢ (050’)
oR; cjsjsingp

O - \/1+2c;s; cosng
For a spinning wave, i.e. setting (C, D, ¢) = (A%P,0,7/2) and a standing wave, i.e. setting
(C, D, p) = (A%,0,0), equations (C4) and (C5) become

Rj — AP gﬁ = ASt‘ /1 + ZCij

spinn. wave: SR, 5 o stand. wave: oR; s’ (C6)
oD — G TS 9D T " /it2css,
OR; — —p. ,Asp OR.;
= —C4S J =0
Oy 7°7 I =

From now onwards, we will use a subscript sp to denote that a quantity is evaluated
at the fixed point of a spinning wave, and a subscript st to denote that a quantity is
evaluated at the fixed point of a standing wave.

In evaluating the terms of (C 3), one first analytically evaluates the gradients, and then
substitute (C, D, ) = (A*P,0,7/2) for spinning solutions and (C, D, ) = (A%,0,0) for
standing solutions, and then equation (C6). For both standing and spinning waves the
Jacobian is a block diagonal matrix:

w0

Ofp 9
g=|0 o o (©7)
0 e Ok

oD 0Oy

This was expected from the symmetries of the equations and is the reason why we
applied the change of variables (C1b). One eigenvalue is trivially A\; = %, and can be
interpreted in terms of the Rayleigh criterion at limit-cycles, as discussed in the main
manuscript. The other 2 eigenvalues are the solutions of the characteristic polynomial

A2WD%%%%%0M®O

oD oy 9D dp  dp 0D

aD Oy dp 0D (C8)

Applying the Routh-Hurwitz criterion, all the real parts of the three eigenvalues are not
negative, i.e. the fixed point is stable or neutrally stable, if and only if all the coefficients
of the second order polynomial (C 8) are not negative (Hurwitz 1964). This leads to the
following necessary and sufficient conditions for stability:

e <0
Sfp | ot <0 (C9)
oD 0 —

@
ofp 0. " 0fp 0fs 5 g
0D 0Oy dp 0D =



C.1. Stability of spinning solutions

For a spinning solution (C, D, ¢) = (A®?,0,7/2), the 5 components of the Jacobian (C7)
are:

%sp - A;st”/ (A7) (C 10b)
%{j = J‘T:Nbxm (@ (4%, w)] (C10¢)
o = SmiQ (47.w) (C10d)
%{fs,? - A;pF (A7) (C10¢)

where the prime expresses a derivative with respect to the amplitude A. The stability
conditions (C9) for a spinning mode are:

F% (A%) <0  (Clla)

ASP ’ ASP /

ECF (am) + SoF (Ar) <0 (C11)
AP / 2 g’ N,
(25r an) - AN @ (e (-SPnl@ (avw)) >0 (1o

Trivially the second inequality is equivalent to the first one. We substitute in the first
and third inequality the definition of F**P from (3.17), and we obtain:

Re[Q' (AP, w)] <0 (C12)
Re [Q (A7, w)]* + Im [Q' (A*F,w)]* >0 (C13)

with equation (C 13) always satisfied if Re [Q’ (A°P,w)] < 0. It follows that a spinning
wave with amplitude AP is stable if and only if (C12) holds, which is the condition
(3.22) reported in the manuscript.
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C.2. Stability of standing solutions
For a standing solution (C, D, ¢) = (A, 0, ¢), the 5 components of the Jacobian (C 7) are:

% B Ast

ac. = 2 ) (C1a)
afD a st
9D st 7263'3313‘6 [Q (A m’w)] T

Jj=1

ot ] Je (2 - 52)? Re [Q' (A%\/1F 2¢;5;,w)] (C 14b)

1 T2, A
afD Ast Al st
G = s [Q (AT 2, ) (C14c)
s j=0
8f¢ 2 4l st
DD o Ast chsjlm [Q (A \/chsj’w)] o
J=1

3 e n (@ (4T T ) C1aa)

Nb

Ao — 3 coRe QA TH2055,,0) (C140)

890 st B j=1

We substitute the expressions (C 14) in the three conditions (C9) and obtain the inequal-
ities (3.23) presented in the paper. In the rest of this section we prove the asymptotic
properties of the inequalities (3.23) discussed in the main body of the paper. For a large
number of burners Nj, we have that the sums in (3.23) can be approximated as an
integral.

C.2.1. Orientation condition

We then discuss the second condition (3.23b). We observe that

0 :/0277 % [— Cosfe) Re [Q(A\/m, W)H df
:/2” wRe QA /T sin(20), )] d — ..
0

a1 cos(20)? :
st P\ 17 At
/0 T i @4/ T+sin(20), )| df (C15)

The last expression of the identity (C15) is the first term in square brackets in the first
addend of (3.23b), which is then zero. Then also the second term in square brackets in
the second addend of (3.23b) is zero. It follows that the whole LHS of (3.23b) is zero.
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C.2.2. Standing pattern condition
We first discuss the third condition (3.23¢), which becomes

/ZW %RG QA" y/T+5in(20),w)| a6 ..
/27r Ast%ﬂf{e [Q’(Ast\/m, w)} dd >0 (C16)
0

1+ sin(26)

We rewrite the second integral as

0

1+ sin(20)
where the term between square brackets is the derivative with respect to 0 of the function
Re {Q(Asﬂ/l + sin(29),w)}. We integrate by parts, and obtain

4 {eosomme [ouarviFsmm )]} <.
2 /0 v sin(20)Re [Q(Ast m,w)] da] (C18)

where the first term within the square brackets evaluates to zero. We substitute this
expression in (C 16) and obtain the condition (3.24).

Appendix D. Scaling of the flame response

We carry out the scaling of the gain of the flame response presented in Figure 4.b so
that it is representative of existing annular combustors. We choose quite a smallf growth-
rate o, = o/wy, = 0.01 because we are studying a thermoacoustic system exhibiting
triggering, so that the flame gain is weak at small amplitudes. We then exploit the
fact that wy =~ wyy, and fix @, = «/w; = 0.08 similarly to Noiray et al. (2011), where
a/wy = 0.08. Then we can use the relation (2.32) for a given number of burners N, and
calculate a reasonable value for 8 = 8 JWiin:

Ny, B cos(o)
2

where we set ¢ = 7/5 in the paper. 3 is the gain of the flame response at A = 0.
This value leads to the vertical scaling of Figure 4.b for N, = 6. Equation (D 1) fixes
the product SN, to a constant when combustors with a different number of flames are
considered.

— (25, +@,) = 0.10 (D1)
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