
Derivations of Ag, the air gap area between the drop and bath.
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Figure 1: (a) Geometry and variables defined. (b) The calculated area of a rigid oblate

ellipsoid as it is increasingly submerged grows less than a sphere and more than a disk, as

expected.

To begin, we choose a coordinate system shown in figure 1a. With this system the

surface area for a surface of revolution is,

A = 2π
∫ b

y′
z(y)

√
1 + (zy(y))2dy. (1)

The ellipsoidal geometry defines z(y) as

z(y) = a

√
1− y2

b2
, ε2 = 1− b2

a2
, (2)

with ellipticity ε and a, b and y′ defined in figure 1a. Utilizing the relationships in equation

2 we get

A =
2πε

1− ε2
∫ b

z′

√
g2 + z2dz, g =

a(1− ε2)
ε

. (3)

Completing the definite integral we arrive at,

Ag = πa2 − π

a2

√
(a2 − z2)(a2 − ε2z2)

+ πa2
(

1− ε2

ε

)
ln

∣∣∣∣∣ a(1 + ε)

ε
√
a2 − z2 +

√
a2 − ε2z2

∣∣∣∣∣ , (4)

which, for z = a, reduces to the familiar form for the surface area of a hemi-ellipsoid.

Ag = πa2
[
1 +

(
1− ε2

ε

)
tanh−1ε

]
. (5)

Equation 4 is the air gap area for an elliptical cap. The plane at z = z′ is the plane

intersecting the periphery of the air gap.
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Derivation of β ∝ D−1

The gravitational energy for a spherical droplet is,

Eg0 =
4

3
πρg(r3)r, (6)

where the vertical coordinate is measured from the lowest point of the droplet. When the

droplet flattens we have,

Eg =
4

3
πρg(a2b)b. (7)

Since the volume remains constant we have r3 = a2b. In terms of the semi-major (a) and

semi-minor axes (b), the reduction in gravitational energy is,

∆Eg =
4

3
πρga2b

[
a2/3b1/3 − b

]
. (8)

The surface energy of the sphere is,

Eσ = 4πσr2. (9)

For the flattened droplet this increases to,

Eσ = 2πσa2
[
1 +

(
1− ε2

ε

)
tanh−1ε

]
, (10)

where we have used twice the area from equation 5. The increase in surface energy, in terms

of a and b is then,

∆Eσ = 2πσa2
{[

1 +

(
1− ε2

ε

)
tanh−1ε

]
− 2b2/3a−2/3

}
. (11)

Additional flattening of the drop would incur a larger increase in surface energy then the

energy lost from further lowering the center-of-mass of the droplet. Therefore, a and b define

the shape of the stable oblate spheroid when ∆Eg = ∆Eσ. After some simplification, this

equality can be written in a somewhat cleaner form as F (a, b) = G(ε), where

F (a, b) =
(

2ρg

2σ

)
b4/3

[
a2/3 − b2/3

]
+ 2a−2/3b2/3, (12)

and

G(ε) = 1 +

(
1− ε2

ε

)
tanh−1ε. (13)

Numerically solving for values of a and b for which F (a, b) = G(ε) allows us to calculate

β = (2/5)(2 + b/D) as a function of droplet diameter, D. Doing so for the range of droplet

diameters explored gives an inverse relationship as seen in figure .
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Figure 2: Numerical (closed circles

and measured (open circles) results for β(D).

3


