Derivations of Ay, the air gap area between the drop and bath.
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Figure 1: (a) Geometry and variables defined. (b) The calculated area of a rigid oblate
ellipsoid as it is increasingly submerged grows less than a sphere and more than a disk, as
expected.

To begin, we choose a coordinate system shown in figure 1a. With this system the
surface area for a surface of revolution is,

A=2r [ )1+ Gy o). 1)

The ellipsoidal geometry defines z(y) as
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with ellipticity € and a, b and 3’ defined in figure 1a. Utilizing the relationships in equation
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Completing the definite integral we arrive at,
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which, for z = a, reduces to the familiar form for the surface area of a hemi-ellipsoid.

A, = ma® [1 + <1 - 62) tanhle] . (5)
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Equation 4 is the air gap area for an elliptical cap. The plane at z = 2z’ is the plane
intersecting the periphery of the air gap.



Derivation of 3 oc D!

The gravitational energy for a spherical droplet is,

4

EgO = §7Tpg<7’3)7’, (6>

where the vertical coordinate is measured from the lowest point of the droplet. When the
droplet flattens we have,

4
E, = gﬂpg(aQb)b. (7)

Since the volume remains constant we have r® = ?b. In terms of the semi-major (a) and
semi-minor axes (b), the reduction in gravitational energy is,

4 .
AE, = gﬂpgazb [a2/5bl/3 — b} . (8)

The surface energy of the sphere is,
E, = 4nor?. (9)

For the flattened droplet this increases to,
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€
where we have used twice the area from equation 5. The increase in surface energy, in terms
of a and b is then,

2
AE, = 2roa® { [1 + (1 ‘ ) tanhle] - 262/3a2/3} . (11)
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Additional flattening of the drop would incur a larger increase in surface energy then the
energy lost from further lowering the center-of-mass of the droplet. Therefore, a and b define
the shape of the stable oblate spheroid when AE, = AE,. After some simplification, this
equality can be written in a somewhat cleaner form as F'(a,b) = G(¢), where

2
F(a,b) = (2/’9> B9 (205 — 1215] + 90~ 294218 (12
g
and
_ 2 »
G(e) =1+ tanh™ €. (13)
€

Numerically solving for values of a and b for which F(a,b) = G(e) allows us to calculate
B =1(2/5)(2+4 b/D) as a function of droplet diameter, D. Doing so for the range of droplet
diameters explored gives an inverse relationship as seen in figure .
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Figure 2: Numerical (closed circles
and measured (open circles) results for 5(D).




