Derivations of A_{g}, the air gap area between the drop and bath.

(b)

Figure 1: (a) Geometry and variables defined. (b) The calculated area of a rigid oblate ellipsoid as it is increasingly submerged grows less than a sphere and more than a disk, as expected.

To begin, we choose a coordinate system shown in figure $1 a$. With this system the surface area for a surface of revolution is,

$$
\begin{equation*}
A=2 \pi \int_{y^{\prime}}^{b} z(y) \sqrt{1+\left(z_{y}(y)\right)^{2}} d y \tag{1}
\end{equation*}
$$

The ellipsoidal geometry defines $z(y)$ as

$$
\begin{equation*}
z(y)=a \sqrt{1-\frac{y^{2}}{b^{2}}}, \epsilon^{2}=1-\frac{b^{2}}{a^{2}} \tag{2}
\end{equation*}
$$

with ellipticity ϵ and a, b and y^{\prime} defined in figure $1 a$. Utilizing the relationships in equation 2 we get

$$
\begin{equation*}
A=\frac{2 \pi \epsilon}{1-\epsilon^{2}} \int_{z^{\prime}}^{b} \sqrt{g^{2}+z^{2}} d z, g=\frac{a\left(1-\epsilon^{2}\right)}{\epsilon} . \tag{3}
\end{equation*}
$$

Completing the definite integral we arrive at,

$$
\begin{align*}
A_{g} & =\pi a^{2}-\frac{\pi}{a^{2}} \sqrt{\left(a^{2}-z^{2}\right)\left(a^{2}-\epsilon^{2} z^{2}\right)} \\
& +\pi a^{2}\left(\frac{1-\epsilon^{2}}{\epsilon}\right) \ln \left|\frac{a(1+\epsilon)}{\epsilon \sqrt{a^{2}-z^{2}}+\sqrt{a^{2}-\epsilon^{2} z^{2}}}\right| \tag{4}
\end{align*}
$$

which, for $z=a$, reduces to the familiar form for the surface area of a hemi-ellipsoid.

$$
\begin{equation*}
A_{g}=\pi a^{2}\left[1+\left(\frac{1-\epsilon^{2}}{\epsilon}\right) \tanh ^{-1} \epsilon\right] . \tag{5}
\end{equation*}
$$

Equation 4 is the air gap area for an elliptical cap. The plane at $z=z^{\prime}$ is the plane intersecting the periphery of the air gap.

Derivation of $\beta \propto D^{-1}$
The gravitational energy for a spherical droplet is,

$$
\begin{equation*}
E_{g 0}=\frac{4}{3} \pi \rho g\left(r^{3}\right) r, \tag{6}
\end{equation*}
$$

where the vertical coordinate is measured from the lowest point of the droplet. When the droplet flattens we have,

$$
\begin{equation*}
E_{g}=\frac{4}{3} \pi \rho g\left(a^{2} b\right) b . \tag{7}
\end{equation*}
$$

Since the volume remains constant we have $r^{3}=a^{2} b$. In terms of the semi-major (a) and semi-minor axes (b), the reduction in gravitational energy is,

$$
\begin{equation*}
\Delta E_{g}=\frac{4}{3} \pi \rho g a^{2} b\left[a^{2 / 3} b^{1 / 3}-b\right] . \tag{8}
\end{equation*}
$$

The surface energy of the sphere is,

$$
\begin{equation*}
E_{\sigma}=4 \pi \sigma r^{2} . \tag{9}
\end{equation*}
$$

For the flattened droplet this increases to,

$$
\begin{equation*}
E_{\sigma}=2 \pi \sigma a^{2}\left[1+\left(\frac{1-\epsilon^{2}}{\epsilon}\right) \tanh ^{-1} \epsilon\right], \tag{10}
\end{equation*}
$$

where we have used twice the area from equation 5 . The increase in surface energy, in terms of a and b is then,

$$
\begin{equation*}
\Delta E_{\sigma}=2 \pi \sigma a^{2}\left\{\left[1+\left(\frac{1-\epsilon^{2}}{\epsilon}\right) \tanh ^{-1} \epsilon\right]-2 b^{2 / 3} a^{-2 / 3}\right\} \tag{11}
\end{equation*}
$$

Additional flattening of the drop would incur a larger increase in surface energy then the energy lost from further lowering the center-of-mass of the droplet. Therefore, a and b define the shape of the stable oblate spheroid when $\Delta E_{g}=\Delta E_{\sigma}$. After some simplification, this equality can be written in a somewhat cleaner form as $F(a, b)=G(\epsilon)$, where

$$
\begin{equation*}
F(a, b)=\left(\frac{2 \rho g}{2 \sigma}\right) b^{4 / 3}\left[a^{2 / 3}-b^{2 / 3}\right]+2 a^{-2 / 3} b^{2 / 3} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
G(\epsilon)=1+\left(\frac{1-\epsilon^{2}}{\epsilon}\right) \tanh ^{-1} \epsilon \tag{13}
\end{equation*}
$$

Numerically solving for values of a and b for which $F(a, b)=G(\epsilon)$ allows us to calculate $\beta=(2 / 5)(2+b / D)$ as a function of droplet diameter, D. Doing so for the range of droplet diameters explored gives an inverse relationship as seen in figure.

Figure 2: Numerical (closed circles and measured (open circles) results for $\beta(D)$.

