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1. Simulation methodology

All our simulation runs were performed using a GPU (graphics processing unit)
accelerated extension of the original two-dimensional viscous vortex particle method
(VVPM) developed in Eldredge (2007). Like the original vortex particle methods, the
VVPM relies on a Lagrangian description of the vorticity field through vortex particles
and employs appropriate techniques for their advection and diffusion and also vorticity
creation at the no-slip boundaries. In the following, we briefly describe the key features of
the viscous vortex particle method focusing particularly on the key advances in the im-
plementational aspects that have allowed us to perform GPU-accelerated simulations at
substantially reduced total run times. For an introduction and detailed description of the
vortex particle methods, their theoretical analysis and criteria for convergence including
elaborate description of the techniques that enable their efficient use on conventional CPU
based architectures (e.g. adaptive fast multipole method, remeshing, particle strength
exchange etc.) we refer the interested readers to the book by Cottet & Koumoutsakos
(2000) and the review article by Koumoutsakos (2005).

The VVPM method approximates the vorticity formulation of the two-dimensional
incompressible Navier-Stokes equations given below:

∂ω

∂t
+ u · (∇ω) = ν∇2ω, (1.1)

where ω and ν are the vorticity and kinematic viscosity of the incompressible fluid, re-
spectively. The boundary conditions that account for the rigid body kinematics (pitching
motion of the airfoil) and the far-field uniform flow are given by

ω(x, 0) = 0 everywhere

u = Ub(t) +Ω(t)k̂ × (xpivot − xb) on the airfoil surface

u→ U∞î in the farfield (|x| → ∞)

(1.2)

where U∞î represents the free stream velocity field with Ub(t) and Ω(t) as the transla-
tional and the angular velocities of the body, respectively. In the above expressions, xpivot
denotes the coordinates of the location about which the rigid body rotates (quarter chord
for pitching airfoil) and xb represents a point on the surface of the rigid body with î and

k̂ as the unit vectors along x and z directions, respectively. We begin all the simulation
runs from an initially inviscid uniform flow field with zero vorticity that corresponds to
an impulsive start of the initially stationary rigid body.
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The vortex particle method (Cottet & Koumoutsakos 2000; Koumoutsakos 2005) relies
on a Lagrangian description of the vorticity field through discrete vortex blobs as follows

ω(x, t) =

N∑
i=1

Γi ηε(x− xi(t)) (1.3)

where Γi denotes the circulation associated with the ith blob with N as the total number
of blobs employed for representing ω. The net vorticity carried by each blob and its
distribution inside the blob is determined by the function ηε, where the parameter
ε determines the core size of equisized blobs. Use of finite sized blobs through the
desingularized function ηε of the following form

ηε =
1

2πε2
exp

(
−‖x− xi‖2

2ε2

)
ensures that the induced velocity remains bounded even when two blobs are located
infinitesimally close to each other. In order to model advection and diffusion of vorticity
the vortex blobs are allowed to advect with the flow and exchange their strengths
respectively as described below.

The governing equation for the evolution of vorticity (1.1) can be expressed in the
Lagrangian framework as

dx

dt
= u(x, t) Advection

dω

dt
= ν∇2ω Diffusion

In the advection substep of the VVPM the positions of the vortex blobs are updated
based on the local fluid velocity. In our implementation, we employ the classical fourth-
order Runge-Kutta integrator to update the positions of the vortex blobs. In the diffusion
substep of the VVPM the vortex blob strengths are updated to account for viscous
diffusion while enforcing the no slip boundary condition at the surface of the rigid body.

The advection substep involves recovery of the velocity field from the vorticity through
application of Biot-Savart’s law with an infinite domain Green’s function (see Cottet &
Koumoutsakos 2000; Koumoutsakos 2005). The fluid velocity u(x, t) is given by (Eldredge
2007)

u(x, t) = uω + uγ + uΩ + U∞î

where uω denotes the velocity induced by all the vortex blobs in the domain, uγ denotes
the velocity induced by the bound vortex sheet on the rigid body surface, and uΩ denotes
the velocity due to rotation of the rigid body.

Recovery of uω from the vorticity field obtained from (1.3) through a direct summation
over all the vortex blobs is a computationally expensive O(N2) operation as one must
account for the mutual interaction between each of the N blobs present in the domain.
In our implementation, we employ the adaptive fast multipole method (AFMM) (Carrier
et al. 1988) to reduce computational expense associated with calculation of uω drastically
to O(N). Moreover, use of a GPU-accelerated implementation of AFMM (Goude &
Engblom 2013) allows us to achieve more than an order of magnitude speedup over
the standard CPU implementation. With an increase in the number of particles we
find calculation of not just uω but also uγ and uΩ to be computationally demanding.
Therefore, we have extended the CUDA based GPU implementations to accelerate the
calculation of uγ and uΩ significantly. These critical advances allow us to efficiently
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perform long time highly-resolved simulations of pitching foil over more than a hundred
cycles using vortex blobs in excess of a few million. In contrast with the conventional
VVPM implementation on multicore CPU architectures the advances outlined above
allow us to perform computations on thousands of cores that are available on modern
general purpose graphics processing units and thus achieve over an order of magnitude
speed up (compared to an OPENMP implementation on 12 cores we observe over a ten
fold speed up using a Tesla K40 GPU with 2880 cores).

To account for the viscous diffusion, we approximate the diffusion operator using the
particle strength exchange method (PSE) (Koumoutsakos & Leonard 1995) wherein the
strength of the individual vortex blobs is updated using the classical fourth-order Runge-
Kutta integrator. The compact support of the PSE operator allows for fast computations
of this substep. To increase computational efficiency, the unbalanced quad-tree build from
the advection substep is used to build an adjacency list for each particle which in turn is
employed in the PSE. To enforce no-slip boundary condition on the rigid body surface,
we follow the earlier approaches that rely on Lighthill’s vorticity creation mechanism to
eliminate the spurious slip through a vortex sheet (Koumoutsakos et al. 1994; Ploumhans
& Winckelmans 2000). The strength of this vortex sheet is determined using the boundary
element method (BEM). The sheet is subsequently diffused into the flow using a vorticity
flux as suggested in Ploumhans & Winckelmans (2000).

The accuracy of PSE operator depends crucially on a proper overlap between the vortex
blobs failing which a convergence to the actual vorticity distribution is not guaranteed.
To maintain an overlap between the vortex blobs and to avoid unnecessary growth in the
number of vortex blobs as a result of the skewness caused by the Lagrangian treatment,
we apply remeshing every few timesteps by mapping the vorticity field back onto a regular
Cartesian grid. Here, we follow the remeshing methodology developed in Ploumhans &
Winckelmans (2000) for a generic body to ensure a more or less uniform distribution
of particles throughout the simulation. Finally, the forces and moment experienced by
the translating and rotating rigid body (pitching airfoil) are computed from the integral
formulations involving time derivative of the impulse and angular-impulse of the total
vorticity, respectively (Wu 1981).

2. Numerical tests

To validate our implementation, we have applied the GPU-accelerated VVPM to
simulate flow past translating and rotating rigid bodies. In this section we present results
from three such demonstration runs and compare them with prior vortex particle and
grid based simulation results. In all the runs, the time step and spatial resolution (h)
are carefully chosen such that ReΓ = |ω|h2/ν ∼ O(1) as suggested by Ploumhans &
Winckelmans (2000) for a well resolved vortex particle simulation. These parameters
vary from run to run both with respect to Re and St. Furthermore, the size of the
largest panel (∆smax) used in the BEM is such that the ratio h/∆smax ∼ 1 following
the recommendation of Eldredge (2007). We use an overlap ratio (h/ε) of 0.8, which falls
between 0.7 and 1.0, as suggested by Barba (2004) for high accuracy simulation with
Gaussian blobs. In all the simulation runs, we perform remeshing every six time steps.
During remeshing, we remove particles whose strength scaled by the kinematic viscosity
(Γ/ν) falls below a certain user-prescribed cutoff. In all our simulations, we use a cutoff of
10−7. This cutoff criterion along with ReΓ ∼ O(1) ensures that particles spanning at least
seven orders of magnitude in circulation are retained in all our simulation runs. Further,
during remeshing we add particles with zero strength around the existing particles so that
there are enough particles to ensure diffusion of vorticity along the domain periphery.
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Figure 1. Vorticity contours at four successive time instants for the impulsive start of a
circular cylinder at Re = 9500.

This prevents spurious artificial accumulation of vorticity along the domain boundary.
The number of layers of zero strength particles to be added are decided based on the
remesh frequency.

2.1. Flow past an impulsively started circular cylinder at ReD = 9500

To begin with we consider flow past an impulsively started circular cylinder of diameter
D at ReD of 9500. Reynolds number based on cylinder diameter as the characteristic
length scale ReD = U∞D/ν, where U∞ denotes the velocity of the circular cylinder. The
test case has been simulated previously with the vortex particle method (Koumoutsakos
& Leonard 1995) and more recently using an advanced vorticity-based method that relies
on wavelets to achieve high adaptivity (Rossinelli et al. 2015).

Figure 1 depicts the vorticity contours computed from our GPU-accelerated imple-
mentation of the VVPM. The VVPM effectively captures the evolution of the strong
interacting vortices that result from unsteady flow separation over the cylinder surface
while maintaining perfect symmetry that is expected to hold during the initial stages of
the flow evolution. As a further check, figure 2 depicts a comparison of the evolution of
the drag coefficient obtained from our runs with the results reported in Rossinelli et al.
(2015). The excellent agreement between the two results, as evidenced from figure 2,
serves to validate our VVPM implementation for rigid translating bodies.

2.2. Flapping elliptical wing

To assess the accuracy and robustness of our implementation on more generic rigid
body motions that involve combined rotation and translation, we next consider the
flapping elliptical wing test case that is widely used as a model problem for investigation
of aerodynamics of insect hovering. The setup of this test case is exactly the same as
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Figure 2. Drag coefficient as a function of time for an impulsively started circular cylinder at
ReD = 9500.

Figure 3. Drag (left) and lift (right) coefficients as a function of time for the flapping
elliptical wing compared with the VVPM simulation results from Eldredge (2007).

the one considered in Eldredge (2007). An ellipse of aspect ratio 10 undergoes combined
sinusoidal translational and rotational motions given by

X0(t) = 1.4c cos

(
πt

2

)
î, θ0(t) =

π

2
+
π

4
sin

(
π

4
+
πt

2

)
, (2.1)

where X0 denotes the coordinates of the center of the ellipse with c as the chord length.
The Reynolds number based on the maximum translational velocity of 2.2c is set to 75
as in Eldredge (2007). To account for the far field quiescent conditions corresponding to
zero flow we equate U∞ to zero.

Figure 3 presents a comparison between the temporal evolution of the lift and drag
forces experienced by the flapping ellipse obtained from our simulation runs with the
values reported in Eldredge (2007). An excellent agreement between the two results
certifies the accuracy of our GPU-accelerated approach for general rigid body motions.
The vorticity contours for the flapping elliptical wing depicted in figure 4 compare
favorably with the ones presented in figure 7 in Eldredge (2007).
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t = 8.0 t = 12.0

Figure 4. Vorticity contours at t = 8 and 12 for the flapping elliptical wing test case.
Equispaced contour levels range from -20 to 20.

2.3. Flow past a pitching airfoil at Rec = 1000

Finally, we assess the efficacy of the GPU-accelerated viscous vortex particle method
in simulating highly separated flow over a rigid pitching airfoil that experiences highly
fluctuating drag and lift forces and moments. We consider flow past a NACA 0012 airfoil
pitching about its center at a Reynolds number Rec of 1000 (Rec = U∞c/ν, with c as
the chord length, U∞ as the freestream velocity and ν as the kinematic viscosity of the
fluid). The sinusoidal pitching motion is given by

θ0(t) =
θmin + θmax

2
− θmin − θmax

2
cos(2πft), (2.2)

where θmin = 10◦, θmax = 30◦ and f = U∞/c.
Figure 5 depicts the drag and lift coefficients along with the non-dimensional moment

as a function of time computed from our GPU-accelerated implementation of the VVPM.
For comparison results from a grid-based finite element simulation method (Mittal
& Tezduyar 1992) have also been included. Despite vast differences between the two
approaches we find a reasonable agreement in the drag, lift and moment predictions.
The flow fields depicted in figure 6 illustrate the complex vortical structures and their
interactions that are effectively captured by our high resolution simulation run.
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Figure 6. Vorticity contours at four successive time instants for the flow past a pitching airfoil
at Rec = 1000.


