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In order to validate the estimated limit μc = √2𝑞 in Section 4.1, the analytical solutions are 

compared with numerical results from the two-dimensional nonlinear shallow water 

equations, (2.1), (2.2) and (2.3). The model equations are discretized on a regular grid, and 

integrated by the MacCormack scheme. The computational domain consists of the 

converging bay connected to the uniform region which is much longer than the incident 

wavelength. The three bay types (q = 2, 1 and 2/3) with ly/lx = 0.5 and h0/lx = 0.1 are taken 

up for the validation. A monochromatic wave is given at the end of the uniform region 

towards the bay, until a resulting standing wave in the bay reaches a nearly equilibrium 

state. For comparisons with the linear solutions, the ratio of incident wave amplitude to 

water depth is set to be very small (a0/h0 = 0.001). The computation is carried out for three 

different values of μ around the estimated limit: μ/μc = 0.5, 1.0 and 1.5. The grid spacing is 

set as ∆x/lx = ∆y/ lx = 0.01 for the V-shaped and U-shaped bays (q = 2, 1), while ∆x/lx = ∆y/ 

lx = 0.005 for the cusped bay (q = 2/3) to represent the rapid transition of the cross-section.  

Figure S1, S2 and S3 show the comparisons of wave amplitude distribution (a/a0) for the 

three bay types, respectively. In each figure, the upper panels represent the analytical 

results for the three μ values, while the lower panels represent the corresponding numerical 

results. When μ is well below the limit (μ = 0.5 μc), the two results show good agreement. 

There are small discrepancies on the bay side, because the longitudinal transition of the 

cross-section is smoothly represented by the regular grid, especially for the strongly 

converging case (q = 2/3). When μ reaches the estimated limit (μ = 1.0 μc), the analytical 

solutions slightly deviate from the numerical results. The minor discrepancies are due to the 

truncation errors of the analytical solutions. When μ exceeds the limit (μ = 1.5 μc), the 

analytical solutions are completely different from the numerical results. Beyond the limit, 

the numerical result depends on the length of the uniform region, because the wave 

amplitude longitudinally decays as a result of strong wave refraction.  

These comparisons support the validity of the estimated limit and the related discussions in 

Section 4.1. The analytical solutions are confirmed to be valid close to the limit. The 

higher-order effect due to wave refraction rapidly grows beyond the limit, and the incident 

wave does not propagate as a progressive wave in the uniform region. The occurrence of 

this phenomenon cannot be described by the present solutions based on the assumption of 

weak transverse flows. 
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Figure S1.  Analytical and numerical results of wave amplitude distribution inside the U-shaped bay for 

the three different μ values. (a) Analytical results, (b) Numerical results. 
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Figure S2. Analytical and numerical results of wave amplitude distribution inside the V-shaped bay for 

the three different μ values. (a) Analytical results, (b) Numerical results. 
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Figure S3. Analytical and numerical results of wave amplitude distribution inside the cusped bay for the 

three different μ values. (a) Analytical results, (b) Numerical results. 

 

 

 

 


