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1 Introduction

Here we describe in more detail the asymptotic solution of the steady state poly-
thermal ice problem in one dimension, and the direct numerical solution of the
same problem using a multiple shooting method. Recall that the polythermal
ice problem was cast in the form

Peu
dT

dz
− d2T

dz2
= a (1)

subject to T ≤ 0 for the cold subdomain Ω−, and

Peu
dφ

dz
+ φpe = a, (2a)

Peu
dφ

dz
+

d

dz

[
κφα

(
g + δ

dpe
dz

)]
= a. (2b)

subject to φ > 0 in the temperate subdomain Ω+.
As velocity fields, we consider either u = constant, or the divergence-free

simple model for an ice divide,

u = (x, 0,−z), (3)

with u = −z.
At the cold exterior boundary zc,

T = T0 (4a)

An inflow boundary at z = zct requires

T = −dT

dz
= q = φ = 0 at z = zct, (4b)

with

q = Peuφ+ κφα
(
g + δ

dpe
dz

)
(4c)

1



along with
pe = N0. (4d)

at the temperate boundary z = zt, while an outflow boundary at zct has

T = 0, −dT

dz
= q = Peuφ at z = zct. (4e)

along with (4d) and
φ = φ0 (4f)

The leading order small-δ model is(
Peu+ ακφα−1g

) dφ

dz
= a, (5)

to be integrated from the relevant inflow boundary (either zt or zct) at which φ
is prescribed, and the compaction pressure is

pe =
ακφα−2ga

Peu+ ακφα−1g
, (6)

and, if zct is an outflow boundary, its location at leading order is determined by

− dT

dz

∣∣∣∣
z=zct

= q(zct) = Peu(zct)φ(zct) + κφ(zct)
αg,

where φ solves (5).

2 Asymptotic approximations

An asymptotic solution that satisfies (5)–(6) is valid at leading order in δ except
in boundary layers that can exist near z = zt or z = zct. We will refer to such
a solution as the ‘outer’ solution. There are a number of different forms the
boundary layers can take, depending on the boundary conditions that apply at
the boundary in question. The simplest boundary layer forms at the exterior
temperate boundary z = zt.

2.1 Boundary layer at the exterior boundary

The outer solution for φ depends purely on the imposed boundary condition on
φ (either (4b) or (4f)), while equation (6) computes the compaction pressure pe
as a function of φ only. which will therefore not in general satisfy the bound-
ary condition (4d). A rescaling of (2) captures the boundary layer structure
that allows (4d) to be satisfied and which matches with the outer solution in a
matching region away from the boundary layer (Holmes, 1995). We define

n̂ = (z − zt)/δ1/2, p̂e(n̂) = pe(z), φ̂(n̂) = φ(z),
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and expand φ̂ = φ̂(0) + δ1/2φ̂(1) + O(δ); only the zeroth order solution for p̂e
will be required, and we omit the superscript there. At leading order, we find
φ̂(0) = constant = φ(zt) by matching with the outer solution. At first order,

Peû
dφ̂(1)

dn̂
+ φ̂(0)p̂e = a,

(
Peû+ ακφ(0)

α−1
g
) dφ̂(1)

dn̂
+ κφ(0)

α d2p̂e
dn̂2

= a,

where û = u(zt). Combining the last two equations gives

κφ(0)
α d2p̂e

dn̂2
− Peû+ ακφ(0)

α−1
g

Peû
φ̂(0)p̂e = −ακφ

(0)α−1g

Peû
(7)

With φ̂(0) = φ(zt), û = u(zt) and pe(zt) defined through (6), the appropriate
solution p̂e that satisfies the boundary condition p̂e = N0 at n̂ = 0

p̂e = pe(zt)+(N0−pe(zt)) exp (−λ|n̂|) , where λ =

√
Peu(zt) + ακφ(zt)α−1g

Peu(zt)κφ(zt)α
.

(8)
This matches the outer solution if and only if λ is finite, non-zero and real.
From these constraints, we glean that

sgn[Peu(zt) + ακφ(zt)
α−1g] = sgn[u(zt)], (9)

with neither side being zero.
This sign constraint, which will reappear below, has a straightforward inter-

pretation. If we take the one-dimensional version of the time-dependent hyper-
bolic problem (5), then Peu + ακφα−1g is the characteristic velocity. The sign
constraint implies that advection velocity u and characteristic velocity point in
the same direction, at least at the exterior boundary. In other words, if there is
a sensible boundary layer structure as derived above, then replacing the advec-
tion velocity u with the characteristic velocity Peu + ακφα−1g also leaves the
identification of the boundary as an inflow or outflow boundary unchanged. We
show in section 2.2 that an analogous result holds true at the cold-temperate
boundary.

We identified inflow boundaries (on which Cauchy data on φ are prescribed)
in the main paper solely based on the direction of the advection velocity relative
to that of the boundary, that is, on (u − v) · n. The boundary layer structure
above suggests that the hyperbolic problem (5) can only give a viable outer
solution (with a well-defined boundary layer structure) if its characteristics lead
to the same identification of exterior inflow boundaries. We have only shown
this in steady state in one spatial dimension, but the result can be extended
to any number of spatial dimensions and to the nonsteady case: boundary
layer solutions analogous to the above, with an exponentially decaying pressure
that can match the outer solution, in general exist at the temperate exterior
boundary only if (u− v) · n has the same sign as (Peu + ακφα−1g− v) · n.

Clearly, neither Peu(zt)+ακφ(zt)
α−1g nor u(zt) can vanish in the boundary

layer solution (8). When either of these quantities is close to zero, however, the
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boundary layer model above no longer applies, and rather specialized alternative
boundary layer models are necessary. We consider first the case of u(zt) being
close to zero, which can happen if the velocity field is given by (3). A different
boundary layer model then becomes necessary if zt = O(δ) and therefore û =

O(δ). The relevant rescaling is ń = (z − zt)/δ, φ́(ń) = φ(z), ṕe(ń) = pe(z) ,
and we write ú = u(zt)/δ = u0zt/(δh), úz = du/dz = u0/h, with ú and úz both
of O(1). The leading order boundary layer model then becomes, after some
straightforward manipulations,

dφ́

dń
=

a− φ́ṕe
Pe(ú+ úzń)

,
dṕe
dń

=
q́

κφ́α
− g,

where matching with the outer problem requires that q́ = κφ(zt)
αg is the mois-

ture flux at the boundary in the outer solution.
We consider problems with near-vanishing velocity u at zt only if zt is an

outflow boundary: this is the physically most realistic configuration of the ice
divide problem with the velocity field (3) as given by Robin (1955). The solution

must then satisfy ṕe = N0 at ń = 0 and φ́→ φ(zct) as ń→∞ by matching. We
solve this boundary layer problem purely numerically by a multiple shooting
method, applying the far-field boundary condition at a large but finite value of
ń.

Yet another boundary layer structure emerges if Peu(zt) + ακφ(zt)
α−1g is

close to zero. This is the case in which the outer problem only just has a
viable solution up to the temperate boundary, or only just fails to have one, as
discussed in the main paper.

Assume that zt is an outflow boundary near which the characteristic veloc-
ity Peu(zt) + ακφ(zt)

α−1g approaches zero, with (5) integrated from a cold-
temperate inflow boundary; it is not clear that the reverse case of zt being an
inflow boundary at which the characteristic velocity is small can lead to a steady
state solution at all. With this assumption, we can define a point z = zf that
lies close to zt at which Peu(zf ) + ακφ(zf )α−1g = 0. This is the point at which
the outer solution breaks down, or would break down as zf may lie outside the
domain. Defining it relies on extending (5) past the edge of the domain, by con-
tinuing the velocity field u and dissipation rate a smoothly outside the domain
(which is trivial with the velocity fields u and constant dissipation rates a that
we have defined).

The boundary layer structure deduced in (8) breaks down when zf − zt ∼
O(δ2/5) even if zf lies outside the domain. A different rescaling becomes nec-

essary, of the form ǹ = (z − zt)/δ
2/5, φ̀(ǹ) = φ(z), p̀e(ǹ) = δ1/5pe(z). Let

φc be the critical porosity determined through the outer problem at zf , which
therefore satisfies

Peù+ ακgφα−1c = 0, (10)

where ù = u(zf ). Note that this only has a solution when ù and g have opposite
signs, which is necessary for the characteristic velocity to be able to change sign.
The boundary layer is intended to capture near-boundary behaviour when φ is
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close to the critical value, so we expand as φ̀ = φc + δ1/5φ̀(1) + δ2/5φ̀(2) + . . ..
Only the leading order term in p̀e is required, and we omit the superscript as
before. At leading order, (2b) is satisfied trivially, while at O(δ1/5), it yields

Peù
dφ̀(1)

dǹ
+ ακgφα−1c

dφ̀(1)

dǹ
= 0,

which again holds trivially by the definition of φc. At O(δ2/5), we finally obtain

κgα(α− 1)φα−2c φ̀(1)
dφ̀(1)

dǹ
+

d

dǹ

(
κφαc

dp̀e
dǹ

)
+ Peù

dφ̀(2)

dǹ
+ ακφα−1c

dφ̀(2)

dǹ
= a,

or more simply, by integrating,

1

2
κgα(α− 1)φα−2c φ̀(1)

2
+ κφαc

dp̀e
dǹ

= a(ǹ− ǹ0), (11)

where ǹ0 is a constant of integration that can be identified as ǹ0 = (zf−zt)/δ2/5
by matching with the outer solution for q. ǹ0 is O(1) by our assumption that
zf is sufficiently close to the boundary at zt.

Equation (2a) similarly yields, expanding to O(δ1/5),

Peù
dφ̀(1)

dǹ
+ φcp̀e = 0. (12)

In the far field, p̀e → 0 as sgn(zt − zct) × ǹ → ∞, while boundary condition
pe = N0 at z = zt translates into p̀e = 0 at ǹ = 0.

We can make the approach to the far field condition more explicit. We

expect that, with p̀e → 0, φ̀(1) ∼ −
√

2aǹ/[κgα(α− 1)φα−2c ], and so

p̀e ∼ −
Peù
√
a√

2κα(α− 1)φαc gǹ
∼ a

(α− 1)φ̀(1)
,

where the assumptions we have made about zct being an outflow boundary
and about a real φc satisfying the definition (10) ensure that the far field limit
sgn(zt − zct)× ǹ→∞ also corresponds to the limit gǹ→∞, so the expression
on the right-hand side has a real solution. We solve the boundary layer problem
using a multiple shooting method, applying the far-field condition above at the
relevant end of a long but finite domain.

2.2 Boundary layer at cold-temperate outflow boundaries

Different boundary layers occur at the cold-temperate boundary, and their form
depends on whether this is an inflow or outflow boundary. Take the outflow
case first. The outer solution in general does not satisfy the zero Darcy flux
boundary condition, which at leading order in δ reads κφαg = 0. To remedy
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this, we need a rescaling that allows a leading-order contribution to be made to
the Darcy flux by pressure gradients,

ñ = (z − zct)/δ1/2, p̃e(ñ) = δ1/2pe(z), φ̃(ñ) = φ(z). (13)

At leading order, (2) then becomes

Peũ
dφ̃

dñ
+ p̃eφ̃ = 0, Peũ

dφ̃

dñ
+

d

dñ

[
κφ̃α

(
g +

dp̃e
dñ

)]
= 0, (14)

where ũ = u(zct). Integrating the second of these equations with respect to ñ
gives

Peũφ̃+ κφ̃α
(
g +

dp̃e
dñ

)
= q̃,

where q̃ is a constant of integration that we can identify by matching with the
outer solution as the total hyperbolic moisture flux in the outer solution at zct,

q̃ = Peũφ(zct) + κφ(zct)
αg.

The fact that this total moisture flux remains constant throughout the bound-
ary layer at leading order is the basis for using the outer solution for q =
Peũφ(zct) + κφ(zct)

αg locate the cold-temperate boundary location zct through
(4e)2, −dT/dz = q = q̃ at z = zct.

Rearranging yields

dφ̃

dñ
= − p̃eφ̃

Peũ
,

dp̃e
dñ

=
q̃

κφ̃α
− Peũ

κφ̃α−1
− g (15)

In the far field, sgn(zt− zct)× ñ→∞, matching with the outer solution further
requires that (φ̃, p̃e)→ (φ(zct), 0), which is a fixed point of the dynamical system
(15) given the definition of q̃. At the cold-temperate boundary itself, ñ = 0 and
we must have zero Darcy flux κφ̃α(g+dp̃e/dñ) = 0, or equivalently, φ̃ = q̃/(Peu).

We therefore require an orbit of (15) that connects the fixed point to the
line φ̃ = q̃/(Peũ) in the (φ̃, p̃e) plane. This turns out to require a constraint
analogous to (9) to be satisfied. Note that the substitution ψ̃ = log(φ̃) renders
(15) in the form of a Hamiltonian dynamical system, and the fixed point must
therefore generally be a saddle point in order for the required orbit to exist.
Linearizing about the fixed point, we find the Jacobian of the dynamical system
as

J =

(
0 −φ(zct)Pe ũ

−αq̃+(α−1)Pe ũφ(zct)
κφ(zct)α+1 0

)
The eigenvalues of J take the form of a pair ±λ that is opposite in sign but
may be either real or pure imaginary. λ is real and non-zero (so that the fixed
point is a saddle) if and only if −αq̃ + (α− 1)Peuφ(zct) and Peu are non-zero
and of the same sign. Using the definition of q̃, that constraint can be written
analogously to (9) as

sgn[Peu(zct) + ακφ(zct)
α−1g] = sgn[u(zct)], (16)
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We conclude that the constraint (16) must generally apply at cold-temperate
boundaries as well as at exterior boundaries. (We have only dealt with cold-
temperate outflow boundaries here, but the boundary condition φ = 0 at inflow
boundaries means that the constraint is satisfied trivially.) The relevant orbit of
(15) is then straightforward to compute numerically, which we use to construct
the composite solutions shown in the main paper.

There is a caveat to this. again associated with the characteristic velocity
Peu(zct)+ακφ(zct)

α−1 nearly vanishing. Technically, if we set the characteristic
velocity to zero in (15), we obtain a non-hyperbolic fixed point (a degenerate
saddle) with λ = 0, but which still has an orbit connected to it along a centre
manifold. However, even though this still furnishes a viable solution to the
boundary layer problem, the boundary layer description no longer applies when
the characteristic velocity is near zero at the boundary, and matching with
the outer solution instead involves a second boundary layer similar to the one
described by (11)–(12). We do not explore this in detail here.

2.3 Boundary layer at cold-temperate inflow boundaries

It is not immediately obvious whether a boundary layer is required when the
cold-temperate boundary is an inflow boundary. If we solve (5)–(6) near such a
boundary with a zero porosity boundary condition at z = zct, we obtain

φ ∼ a

Peũ
(z − zct)−

κg

Peũ

(
a(z − zct)

Peũ

)α
+ . . . (17a)

pe ∼
αaκg

Peũ

(
a(z − zct)

Peũ

)α−2
− 2α(α− 1)

κ2g2a

Peũ

(
a(z − zct)

Peũ

)2α−3

+ . . .

(17b)

where ũ = u(zct) in the notation of the previous subsection. For α > 3/2, this
leading order solution also satsifies the zero Darcy flux boundary condition to
O(δ): we have not only κφαg = 0 at z = zct, but also κφαdpe/dz → 0 as
z → zct. As in the remainder of the paper, we will focus on α ≥ 2 below.

To determine whether a boundary layer is needed, we therefore need to go
further and look at the O(δ) corrections δφ(1) and δpe

(1) to the zeroth order
solution φ, pe computed from (5)–(6), from which we just derived (17b) (we
omit superscripts (0) for consistency with the notation of (5)–(6)). The main
issue at stake is whether these first order corrections remain small compared with
the zeroth order solutions, which themselves approach zero near the boundary
for α > 2.

The first order corrections satisfy

Peu
dφ(1)

dz
+ φ(1)pe + φpe

(1) = 0, (Peu+ ακφαg)
dφ(1)

dz
+

d

dz

(
κφα

dpe
dz

)
,

where φ and pe without superscripts denote the zeroth order solution as above.
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With φ(1) = 0 at z = zct, the solutions near z = zct behave as

φ(1) ∼ α(α− 2)κ2g

Peũ

( a

Peũ

)3(a(z − zct)
Peũ

)2α−4

+ . . . (18a)

pe
(1) ∼ α(α− 2)κ2g

( a

Peũ

)4(a(z − zct)
Peũ

)2α−5

+ . . . (18b)

If we restrict our attention to α ≥ 2, it follows from the exponents on (z − zct)
that the first order correction δpe

(1) is larger than or similar in size to the
zeroth order solution pe in (17b) itself when 2 < α < 3 and |z− zct| . δ1/(3−α),
indicating that a boundary layer is required. For α = 2, the leading order (in
z−zct) term displayed vanishes due to the coefficient α−2. By including higher
order terms in (z−zct), it can be shown that pe

(1) ∼ (z−zct) near the boundary
in that case, while pe ∼ αaκg/(Peũ), so that the asymptotic expansion remains
well-ordered and no boundary layer is needed.

The relevant rescaling that captures the boundary layer for 2 < α < 3 is
n̆ = δ−1/(3−α)(z − zct), φ̆(n̆) = δ−1/(3−α)φ(z), and p̆e(n̆) = δ(α−2)/(3−α)pe(z).
The leading order rescaled version of (2) is

Peũ
∂φ̆

∂n̆
= a, (19a)

∂

∂n̆

[
φ̆α
(
g +

∂p̆e
∂n̆

)]
− φ̆p̆e = 0. (19b)

Combined with φ̆ = 0 at n̆ = 0, the porosity solution φ̆ = a/(Peũ)n̆ is unchanged
from (17a), while p̆e satisfies a linear elliptic problem

∂

∂n̆

[
κ
( a

Peũ
n̆
)α ∂p̆e

∂n̆

]
− a

Peũ
n̆p̆e = −αaκg

Peũ

(
an̆

Peũ

)α−1
. (20)

To match, we require that p̆e satisfies

p̆e ∼
αaκg

Peũ

(
an̆

Peũ

)α−2
(21)

in the far field, and in addition we require that φ̆α(g + dp̆e/dn̆) vanishes as
n̆→ 0.

With α > 2, (20) has an irregular singular point at n̆ = 0, and classical
approaches such as a Frobenius expansion will not work. Numerically, we handle
the problem analogously to the inflow boundary in the shooting method solution
to the full steady state problem (section 3), by transforming to the variables Υ =

κφ̆α−1(g + dp̆e/dn̆), Ψ = φ̆α−2p̆e, dζ/dn̆ = φ̆−1, which leads to the dynamical
system

dφ̆

dζ
=

a

Peũ
φ̆,

dΥ

dζ
= − a

Peũ
Υ+φ̆3−αΨ,

dΨ

dζ
=

1

κ
Υ+

a(α− 2)

Peu
Ψ−gφ̆α−1,
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with a fixed point at (φ̆,Ψ,Υ) = (0, 0, 0), corresponding to the cold-temperate
boundary, approached as sgn(ũ)× ζ → −∞ in the transformed coordinates. As
in the corresponding dynamical system in section 3 for 2 < α < 3, we find that
the Jacobian evaluated at the fixed point has two eigenvalues of the opposite
sign to sgn ũ, indicating that there is a one-parameter family of orbits into the
fixed point. As in the corresponding case in section 3, there is a caveat in that
the fixed point is on the boundary of the domain on which the dynamical system
is defined, and the Jacobian is one-sided; however we still expect to be able to
find a single orbit that matches the far field condition Ψ ∼ ακga/(Peũ)φ̆2α−4

as sgn(ũ)× ζ → +∞ and connects to the fixed point. We compute an approxi-
mation to that orbit numerically using a multiple shooting method over a large
but finite interval in ζ as in section 3, applying the far field condition at one end
of the interval with large φ̆ (while still allowing φ̆ to become very small at the

other end of the interval), and putting Υ/φ̆ = 0 at the other in order to ensure

that the orbit lies on the stable manifold to a linear approximation in φ̆.

3 Steady state solution

Here we describe the multiple shooting method used to solve the one-dimensional
temperate ice problem directly. There are two parts to this: the first is a nearly
closed-form solution of the heat equation (1), and the second is the solution of
the temperate ice problem (2), reformulated as a first-order system.

3.1 The heat equation

The steady state heat equation (1) is straightforward to solve through the use
of integrating factors. For constant u, we have

T (z) =
az

Peu
+A exp(Peuz) +B. (22)

while for u given by (3) with u0 < 0,

T (z) = −a 2h

Pe|u0|
F+

(√
Pe|u0|

2h
z

)
+A exp

(
Pe |u0|

2h
z2
)
D+

(√
Pe|u0|

2h
z

)
+B

(23)
where D± is Dawson’s integral

D±(x) = exp(∓x2)

∫ x

0

exp(±x′2)dx′

and F the anti-derivative of D,F±(x) =
∫ x
0
D±(x′)dx′. For the somewhat less

realistic case of u0 > 0, we obtain the analogous

T (z) = −a 2h

Pe|u0|
F−

(√
Pe|u0|

2h
z

)
+A exp

(
Pe |u0|

2h
z2
)
D−

(√
Pe|u0|

2h
z

)
+B

(24)
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This reduces the heat flow problem (1) into the algebraic problem of finding the
constants of integration A and B.

3.2 The shooting method for the temperate ice problem

A closed-form solution of the temperate ice problem (2) is not possible, but we
can render it in a form suitable for a shooting method approach. Straightforward
manipulations allow the one-dimensional problem (2) for temperate ice to be
reformulated as a first order system

dφ

dz
=
a− φpe

Peu
, (25a)

dpe
dz

= δ−1
(

q

κφα
− Peu

κφα−1
− g
)
, (25b)

dq

dz
= a+ Peφ

du

dz
. (25c)

We apply a multiple shooting method, integrating (25) as an initial value prob-
lem across N partitions of the temperate domain, each of the form (min(zt, zct)+
θi|zt−zct|,min(zt, zct)+θi+1|zt−zct|) with either 0 = θ1 < θ1 < . . . < θN+1 = 1
or 1 = θ1 > . . . > θN+1 = 0. There is an exception to this when the cold-
temperate boundary zct is an inflow boundary, and (25b) becomes singular due
to the vanishing porosity at the boundary. In that case, we transform (25) in
the partition closest to zct as described in section 3.3 below.

Except where that transformation is applied, we integrate over each parti-
tion, using initial conditions φ = φi, pe = pe,i, q = qi at θi and obtaining final
values φ = Φi+1, pe = Pe,i+1, q = Qi+1 at θi+1, which are functions of φi, pe,i,
qi and, through the length of the partition, of zct. The shooting method then
enforces constraints on the φi, pe,i, qi and zct to ensure that all the relevant
boundary conditions are satisfied at zt and zct, along with continuity of the
solution at interior partition end points in the form φi = Φi, pe,i = Pe,i, qi = Qi
for i = 2, . . . , N if the equations (25) are solved on each partition of the tem-
perate domain, or at one fewer interior partition end point (so i = 3, . . . , N or
i = 2, . . . , N − 1) if the transformed version of the equations is solved on either
the first or the last partition.

The implementation of boundary conditions at the boundaries of the tem-
perate domain is straightforward, except in the transformed case. By way of
example, assume that we have an outflow boundary at z = zct with zct < zt,
and have chosen a partition with θ1 = 0, θN+1 = 1. Then θ1 corresponds to the
cold-temperate boundary zct, at which we impose (4e) through

q1 = qct(A,B, zct), Peu(zct)φ1 = qct(A,B, zct)

where qct(A,B, zct) is defined as a function of zct and the constants of integration
in the solutions for T through

qct(A,B, zct) = − dT

dz

∣∣∣∣
z=zct
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At the temperate exterior boundary, we impose (4d) and (4f) in the form

Pe,N+1(φN , pe,N , qN , zct) = N0, ΦN+1(φN , pe,N , qN , zct) = φ0,

and the problem is closed by further constraining A,B and zct through the
Dirichlet conditions on T , (4a) and (4b)1,

T |zc = T0, T |z=zct = 0.

The problem is solved using Newton’s method, with the asymptotic solution
described above generally providing the initial guess. The computation of the
Jacobian involves the derivative of Φi+1, Pe,i+1 and Qi+1 with respect to φi, pe,i,
qi and zct; this is computed in the standard way by solving for that derivative
using the same integration routine for ordinary differential equations that is also
used to compute Φi+1, Pe,i+1 and Qi+1. Other configurations with different
orientations of the partitions of the temperate domain follow the same scheme
as above, provided the cold-temperate boundary is an outflow boundary.

3.3 Change of variables near cold-temperate inflow bound-
aries

Inflow boundaries at zct are handled slightly differently. We can decouple the
heat equation entirely from the temperate ice problem because the boundary
conditions on T no longer couple to the flux q; this allows us to compute A, B
and zct without reference to the other unknowns, and to pose the temperate ice
equations (25) on a known domain.

Second, to avoid the difficulties associated with the singularity in (25b) at
φ = 0, we transform in the partition closest to zct to a new set of independent
and dependent variables such that the boundary z = zct becomes a fixed point
of a dynamical system. As we already did in section 2.3 for the boundary layer
that forms at a cold-temperate inflow boundary, we consider only the case of
α ≥ 2. The transformation we apply depends on α: for 2 ≤ α ≤ 3, we define

Ψ = φα−2pe, χ = (z − zct)/φ, ω = (q − a(z − zct))/φ,
dζ

dn
= 1/φ,

(26)
which leads to the system

dφ

dζ
=

a

Peu
φ− 1

Peu
φ4−αΨ, (27a)

dΨ

dζ
=

a

κδ
χ+

1

κδ
ω − Peu

κδ
− g

δ
φα−1 − (α− 2)

Peu
φ3−αΨ2 +

(α− 2)a

Peu
Ψ, (27b)

dχ

dζ
= 1− a

Peu
χ+

1

Peu
φ3−αχΨ, (27c)

dω

dζ
= Peu′φ− a

Peu
ω +

1

Peu
φ3−αΨω. (27d)
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where u′ = du/dz, and u must be treated as a function of z − zct = φχ,
specifically u = u(zct) + u′φχ.

For α > 3, we use instead

Ψ = φ(α−1)/2pe, χ = (z−zct)/φ, ω = (q−a(z−zct))/φ,
dζ

dn
= 1/φ(α−1)/2.

(28)
Then

dφ

dζ
=

a

Peu
φ(α−1)/2 − 1

Peu
φΨ, (29a)

dΨ

dζ
=

a

κδ
χ+

1

κδ
ω − Peu

κδ
− g

δ
φα−1 − α− 1

2Peu
Ψ2 +

(α− 1)a

2Peu
φ(α−3)/2Ψ, (29b)

dχ

dζ
= φ(α−3)/2

(
1− a

Peu
χ
)

+
1

Peu
χΨ (29c)

dω

dζ
= Peu′φ(α−1)/2 − a

Peu
φ(α−3)/2ω +

1

Peu
Ψω. (29d)

with u a function of φχ as before. Note that for α = 3, the two dynamical
systems (27) and (29) are identical.

The transformed equations appear far more complicated than the original
system (25). The point here is that the boundary z = zct at which φ = 0
corresponds to a fixed point of the dynamical system reached as sgn(u(zct)) ×
ζ → −∞, and we can investigate the local behaviour of orbits into the fixed
point by constructing the invariant manifolds connected to the fixed points,
which allows solutions to be computed numerically.

Still restricting ourselves to α ≥ 2, there are three distinct cases to consider,
α = 2, 2 < α ≤ 3, and α > 3. In each case, it is important that we have a degree
of freedom in choosing the orbit into the fixed point (meaning, we would like a
one-parameter family of orbits into the fixed point if the fixed point is unique,
or a one-parameter family of fixed points, each with a unique orbit into it).
Otherwise, if there were a unique orbit into a unique fixed point, there would be
a unique relationship between the dependent variables (φ,Ψ, χ, ω), which would
in turn imply a unique relationship between φ, pe, q and z and therefore no
scope for satisfying a boundary condition on pe at the exterior boundary zt as
required by the formulation of the steady state problem. Conversely, if we have
more than a single degree of freedom in choosing the orbit into the fixed point
— say, a two-parameter family of orbits into a unique fixed point — the problem
will be underdetermined, requiring more than the single boundary condition at
the exterior boundary to furnish a unique solution. We are unable to give a
complete analysis of the problem for all α ≥ 2 (in particular, for non-integer
α), but sketch a number of relevant observations below, indicating that we are
likely to have a single degree of freedom in choosing the orbit into the fixed
point in each case.

For α = 2, the fixed point is at (φ,Ψ, χ, ω) = (0,Ψ0,Peu/a, 0) with Ψ0

arbitrary. The fixed point has a one-dimensional centre manifold (which simply
reflects the fact that there is in fact a one-parameter family of fixed points, so
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there is no motion at all along the centre manifold), a one-dimensional stable
manifold (stable in the sense of the fixed point being an attractor in the limit
sgn(u(zct)) × ζ → −∞) and a two-dimensional unstable manifold. The fixed
point must therefore be approached along the stable manifold, which is unique,
but the fact that the fixed point is not unique gives us the required degree of
freedom.

For 2 < α ≤ 3, the fixed point is at (φ,Ψ, χ, ω) = (0, 0,Peu/a, 0) and appears
to have a two-dimensional unstable manifold as well as a two-dimensional sta-
ble manifold, giving us the required degree of freedom. We make this statement
based on the eigenvalues of the Jacobian of the dynamical system, which masks
several complications. For non-integer α, the dynamical system cannot be ex-
tended smoothly to φ < 0, so the fixed point intrinsically sits on the boundary
of the domain of definition of the dynamical system. Moreover, while we can
still somewhat näıvely calculate a one-sided Jacobian, defined as a matrix of
partial derivatives computed at the fixed point, these partial derivatives are not
in fact continuous near the fixed point if 2 < α < 3. As a consequence, standard
results about the existence and uniqueness of invariant manifolds do not nec-
essarily apply. Still, taking a näıve linearization about the fixed point at face
value, we find a one-parameter family of orbits into the fixed point from within
the domain of definition in the linearized system; for α = 3, the dynamical
system (27) can be extended to φ = 0 and is infinitely differentiable at the fixed
point, so we can be certain of a two-dimensional unstable and stable manifold,
and can therefore definitively establish the existence of a one-parameter family
of orbits into the fixed point.

For α > 3, the fixed point remains at (φ,Ψ, χ, ω) = (0, 0,Peu/a, 0) and
the Jacobian of the dynamical system at the fixed point (which is again one-
sided if α is not an odd integer, and the partial derivatives making up the
Jacobian are again not continuous if α < 5) has a negative, a positive and two
zero eigenvalues. Matters again become complicated at this stage, and we only
sketch a few observations. Requiring that z must not lie on the wrong side
of zct (which constrains the sign of χ) can actually be used to show that the
stable manifold is not physically viable, and we expect the physically relevant
orbit to approach the fixed point along the centre manifold. Although the
centre manifold is two-dimensional, the fixed point is a degenerate saddle on the
centre manifold, suggesting a single orbit into the fixed point for a given centre
manifold. A one-parameter family of orbits into the fixed point is instead likely
to arise because the centre manifold can be non-unique when there is motion
on the centre manifold towards the fixed point, and there is simultaneously a
stable manifold (essentially, exponentially small terms near the fixed point cause
different centre manifolds to diverge away from the fixed point, see Wiggins,
2003). This could potentially be made more rigorous in the case where α is an
odd integer. The dynamical system can then be continued smoothly to negative
values of φ and standard results on the uniqueness of centre manifolds apply
(Carr, 1981; Sijbrand, 1985), but we do not pursue the possibility further here.

From the computational perspective, the important aspect of the local be-
haviour of the dynamical systems (27) and (29) near their fixed points is that
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in all parameter regimes with α ≥ 2, the local behaviour of the variables χ and
ω on orbits into the fixed point must be of the form

ω ∼ Pe2uu′

2a
φ+ o(φ), χ =

Peu

a
+
Pe2uu′

2a2
φ+ o(φ),

Moreover, ω and χ departing from these local forms correspond to motion away
from the fixed point (either in the sense of motion away from the fixed point
along a centre manifold, or of the growth of an unstable mode in the linearized
version of the dynamical systems). We can therefore use the local forms above
to constrain approximate orbits that approach the fixed point.

Specifically, we pick a large interval of values of ζ over which we integrate
(27) and (29). For instance, for (27), we expect φ to decay exponentially in ζ
with an e-folding length Peu/a,. We therefore make the interval much larger
than that e-folding length and confirm numerically that the result is insensitive
to the exact choice of the length of the interval of integration.

Over that integration interval, we apply the same basic multiple shooting
approach as above, splitting the interval into partitions and ensuring continuity
at the end points of those partitions. At the end point of the whole interval
that corresponds to the smallest value of sgn(u)ζ, we enforce the conditions

ω − Pe2uu′φ/(2a)

φ
=
χ− Peu/a− Pe2uu′φ/(2a2)

φ
= 0.

At the other end of the ζ-interval, we enforce continuity with the the solution
to the untransformed system (25) on the adjacent partition of the temperate
subdomain (that is, the interval between θ2 and θ3 or the interval between θN−1
and θN in the notation used before), using the definitions (26) or (28) to relate
the two sets of variables. This allows us to formulate the temperate ice equations
as a root-finding problem, which is again solved using Newton’s method.

4 Local behaviour near a cold-temperate inflow
boundary

The discussion above has indicated that there is a variety of possible local be-
haviours near cold-temperate inflow boundaries. Although the details of the
near-boundary behaviour can in principle be deduced from the transformed dy-
namical systems (27) and (29), it is in fact much easier to comprehend the
relevant behaviour if we simply look for power-law type local solutions.

Let n = sgn(u)× (z − zct) be distance into the temperate domain from the
cold-temperate boundary, and similarly let un = |u| and gn = sgn(u)× g be the
inward-pointing ‘components’ of velocity and gravity at the boundary. We can
look for approximate solutions solutions such that φ ∼ c1nβ and pe ∼ p0 +c2n

γ .
It is then useful to re-write the temperate ice problem (2) in the alternative
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form

Peun
dφ

dn
+ φN = a, (30a)

κ
d

dn

[
φαgn + δφα

dpe
dn

]
− φN = 0, (30b)

subject to φ→ 0, φαdpe/dn→ 0 as n→ 0. These boundary conditions require
β > 0 and αβ + γ − 1 > 0, or γ > 1 − αβ. We also have the constraint that
φ ≥ 0 in the temeprate region, which here requires that c1 > 0. Substituting
the assumed local power laws, we obtain

βPeunc1z
β−1 + c1p0z

β + c1c2z
β+γ ∼ a

(31a)

αβκgnc
α
1 z

αβ−1 + δκcα1 c2γ(αβ + γ − 1)zαβ+γ−2 − c1p0zβ − c1c2zβ+γ ∼ 0
(31b)

The next task is to identify all possible ways of balancing leading order terms
(through the choice of β and γ) that also allow us to solve for c1 and c2, with
c1 positive. This leads to the following possible local forms, depending on the
value of α: We always find linear growth of porosity (β = 1) near the boundary
due to melting as

φ ∼ a

Peun
n,

while the behaviour of compaction pressure must take one of the following forms,
valid only for permeability exponents α satisfying the inequalities or equalities
indicated

pe ∼
2κgna

Peun
+ o(n), α = 2, (32a)

pe ∼ p0 −
(
gn
δ
− p0Peun

2a

)
n, α = 2, (32b)

pe ∼ p0 +
p0(Peun)α−1

2aα−1δκ(3− α)
n3−α, 2 < α < 3, (32c)

pe ∼ −
gn
δ
n, 2 < α < 3, (32d)

pe ∼
3κgna

2

(Peun)2 + 3δκa2
n, α = 3, (32e)

pe ∼
ακgna

α−1

(Peun)α−1
nα−2, α > 3, (32f)

where p0 is arbitrary. For values of α that permit more than one of the forms
above, the near-wall behaviour cannot be determined by a local analysis alone.
All of the local behaviours above are equivalent to orbits into the relevant fixed
points of the dynamical systems (27) and (29), but demonstrating this is a
lengthy and ultimately not very illuminating task. In the limit of small δ, we also
find that the power law behaviour above is consistent with the near-boundary
behaviour deduced in section 2.3 for the exponents α considered there.
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