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E�ect of wing center of mass o�set

on passive pitching

In equation (2.4) and (2.10) we ignore the center of mass o�set with respect to
the rotational axis. Speci�cally, accordingly to appendix A, the y-o�set to the
pitching axis is 0.52mm. In the experiments and simulations associated with
equation (2.4) and equation (2.10), the mean wing chord length is 4mm. Since
the o�set is 13% the mean wing chord length, it is relevant to quantify the e�ect
of this o�set on the passive pitching dynamics. Here we quantify this e�ect on
equation (2.4) and (2.10).

Equation of motion derivation

Here we consider the e�ect of center of mass o�set on passive pitching. As shown
in �gure 1a, the wing �apping motion can be decomposed into wing stroke
motion φ(t) and passive pitching motion ψ(t). In the 2D approximation, the
wing stroke motion is projected to planar motion. For a particular wing chord
located at a distance r from the wing root, the displacement in the 2D plane
is approximated as X(t) = rφmax cos(wt), where φmax is the stroke amplitude
and w is the driving angular frequency. We derive the equation of motion for
this 2D approximation and quantify the inertial term due to the center of mass
o�set. An illustration of the set up is shown in �gure 1b.

We can derive the equation of motion using the Lagrangian approach. In
�gure 1b the center of mass of the physical pendulum is marked in red and the
rotation axis is green. We assume the horizontal motion X(t) is prescribed and
aim to solve for the rotational motion ψ(t). We let l denote the length to the
center of mass, m the pendulum mass and I the moment of inertia with respect
to the center of mass. The center of mass position is given by:

x = l sinψ +X
y = −l cosψ (1)
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Figure 1: Setup of a horizontally driven physical pendulum

The velocity vector is given by:

ẋ = lψ̇ cosψ + Ẋ

ẏ = lψ̇ sinψ
(2)

The kinetic energy of the system is given by

K =
1

2
mv2 +

1

2
Iw2. (3)

From (2) we �nd the velocity is given by

v2 = ẋ2 + ẏ2 = l2ψ̇2 + Ẋ2 + 2 ˙lψẊ cosψ (4)

The angular velocity w is given by w = ψ̇. Consequently, the kinetic energy is
given by

K =
1

2
m(l2ψ̇2 + Ẋ2 + 2 ˙lψẊ cosψ) +

1

2
Iψ̇2 (5)

The potential energy is given by

U = −mgl cosψ (6)

We then obtain the equation of motion from taking the derivative of the La-
grangian:

∂L
∂ψ = − sinψmlψ̇Ẋ −mgl sinψ

d
dt
∂L
∂ψ̇

= ml2ψ̈ +mlẌ cosψ −ml sinψẊψ̇ + Iψ̈
(7)

Substituting these terms into the equation d
dt
∂L
∂ψ̇

− ∂L
∂ψ = τψ we obtain the

equation of motion:

kψ + Iψ̈ +ml2ψ̈ +mlẌ cosψ +mgl sinψ = 0 (8)

Here kψ is the spring torque, (I +ml2) is the e�ective moment of inertia. Our
paper lacks the last 2 terms and here we discuss why they are neglected.
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Firstly, our system is driven at 120Hz so the contribution of gravity is small.
Speci�cally, the moment arm l is small. Formally we have

Iw2ψmax � mgl (9)

The term mlẌ cosψ represents the e�ect of center of mass o�set on passive
pitching. This term is proportional to the stroke acceleration.

In�uence on equation (2.4)

Equation (2.4) does not consider the wing center of mass e�ect. Although
mlẌ cosψ is not included in eqn (2.4), its contribution is 0 at wing midstroke
based on the assumption that δ = 0◦. Based on our kinematic assumption, ψ(t)
and X(t) are purely sinusoidal and the relative phase shift δ = 0◦. This assump-
tion is valid in most �apping experiments studied in the paper. Consequently,
ψ(t) and X(t) take the form of :

X(t) = Xmax cos(wt)
ψ(t) = ψmax sin(wt)

(10)

Due to the relative phase, we observe at wing midstroke ψ̈(tmid) is at maximum
and Ẍ(tmid) is zero. Hence, the inertial term derived from the 2D model does
not come into eqn (2.4) at midstroke. The error due to this missing inertial
term is contained in the assumption that δ = 0◦. This inertial term implies
that there should be passive rotation in vacuum. However, according to our
kinematic assumption (sinusoidal and δ = 0), the contribution of the inertial
term is 0 in vacuum at wing mid-stroke even if there is substantial passive
rotation. Hence, eqn (2.4) does not lose accuracy and its assumption covers
the inertial term's e�ect. The model prediction fails at large δ, which is when
the term involving Ẍ(tmid) becomes signi�cant. In this respect, this extra term
involving Ẍ that is responsible for passive pitching in vacuum does not a�ect
equation (2.4) at mid-stroke.

In�uence on equation (2.10)

In section 2.4 we proposed a coupled PDE-ODE system to solve for passive
pitching. The ODE formulation is given by equation 2.10. The derivation of
equation 2.10 is given in this supplement as eqn (8). We ignore the terms
mlẌ cos θ and mgl sin θ in the simulation.

We ignore the termmlẌ cosψ because the contribution from this term is not
signi�cant for the particular simulation in section 4.2.3 . The main discrepancy
between the 2D numerical simulation and the 3D experiment comes from the
2D-3D �uid mechanical di�erences. There is a �tting parameter β that accounts
for the 2D-3D discrepancy. The simulation result will be very similar with this
added term since the most signi�cant error is taken by the �tting parameter β.
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Figure 2: Simulation of the the 2D pendulum in vacuum

To show the inertial term does not have large impact on passive pitching, we
run dynamical simulations and �apping experiments in vacuum at 120Hz. We
run a simulation using equation (8) with the initial condition to ψ(0) = 0 and
ψ̇(0) = 0. The parameter values are listed in the table below.

ODE parameters value

k 1.4µNm/rad
l 0.52mm
g 9.8m/s2

m 0.52mg
I 1.54mg ·mm2

A 3.7mm

In the dynamical simulation, k and m are normalized by wing span and l is
normalized by �exure width. Here we drive the system in vacuum at 120Hz. A
is the leading edge displacement amplitude. We prescribe the driving function
using the function

X(t) = A cos(wt).

Here we simulate for 30 periods and show the last 10 periods.
Figure 2 shows the oscillation amplitude is less than 5◦. Hence the passive

pitching in vacuum is not a signi�cant error source. The spurious high frequency
signal is due to the initial condition. Equation (8) has no damping term to
remove the energy and hence the in�uence of initial condition persists. If we
introduce a small damping term into equation (8), −bψ̇, where b is a small
damping coe�cient that physically corresponds to the small �exure viscoelastic
damping, then the in�uence from the initial condition can be gradually damped
out. Figure 3 shows a similar simulation with this term added. Figure 3 shows
the steady state solution. In reality, the damping term b is small and di�cult to
quantify. The solution should be in between the results shown in �gure 2 and
3, depending on the actual value of b.

Physically, the inertial term contribution is not signi�cant because the wing
resonance is not deliberately paired with the driving frequency. Here the driving
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Figure 3: Simulation of the 2D pendulum in vacuum, with a small damping to
remove the initial condition in�uence.

frequency is 120Hz, which corresponds to the resonance of the piezo-electric
actuator, not closely paired to the wing. Using equation (8) we can obtain cases
in which the passive pitching amplitude is large. However, it requires the natural
resonant frequency of the pendulum to be matched with the driving frequency
to obtain large passive pitching in vacuum. This can be done by varying K, m,
or I. In our case the driving frequency is di�erent from the pendulum resonance,
hence the e�ect of this term is small.

See the online content for a video that compares �apping in air versus in
vacuum for 2 wing hinges (7.5µm normal and 12.7µm very sti�). In both cases
the passive pitching in vacuum is much smaller than it is in air, and we see the
pitching frequency is higher than the driving frequency. The pressure in vacuum
is around 0.8 - 1.2 mTorr. These experiments correspond to the simulation
shown in section 4.2.3. Consequently, the inertial contribution is small and can
be ignored.

5


