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Appendix A. Background to the fKdV equation (1.1)

We give brief details behind the derivation of the steady form of the fKdV equation
(1.1). Let L be a charactertistic horizontal lengthscale, and H be a much shorter repre-
sentative vertical length scale, such as the mean water depth. Using an asterisk to denote
a dimensional variable, we introduce the scalings,

x∗/H = δ−1/2x, y∗/H = y, u∗/(gH)1/2 = u, v∗/(gH)1/2 = δ1/2v (A 1)

where δ = H/L ≪ 1, g is the gravitational acceleration, and u∗, v∗ are the velocity
components in the horizontal, streamwise x∗ direction and the vertical y∗ direction re-
spectively. The bottom topography is located at y∗ = σ∗(x∗). Assuming small amplitude
topography, we introduce the scalings

σ∗/H = δ2σ(x), η∗/H = δη, (A 2)

where η∗(x∗) is the vertical displacement of the free surface from the constant level H.
The variables x, y, u, v, η, and σ are all assumed to be O(1). The Froude number
F = U/(gH)1/2, where U is a representative streamwise velocity, is scaled by writing

F = 1 + δµ, (A 3)

where µ = O(1). Under these conditions we derive the fKdV equation (Akylas 1984)

ηxxx + 9ηηx − 6µηx = −3σx. (A 4)

Integrating once with respect to x, we obtain that

ηxx +
9

2
η2 − 6µη = −3σ +A, (A 5)

where A is a constant of integration. In fact the integration constant may be set to
zero without loss of generality. To see this, we make the change of dependent variable
η = η̃ + c, for constant c, and substitute into (A 5) to obtain

η̃xx +
9

2
η̃2 − 6µ̃η̃ = −3σ + Ã, (A 6)

where µ̃ = µ− 3c/2 and Ã = A+ 6µc− 9c2/2. We choose the constant c so that Ã = 0,
setting

c =
2

3

(
µ−

√
µ2 +A/2

)
. (A 7)
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Then, (A 6) becomes

η̃xx +
9

2
η̃2 − 6µ̃η̃ = −3σ , (A 8)

i.e., equation (1.1) in the main text. Thus by analysing (A 8) we effectively analyse the
apparently more general (A 5), whose solutions differ only by a uniformly added height
level. The integration constant can therefore be set to zero with no loss of generality.

Appendix B. Numerical scheme

In order to obtain numerical solutions to the fKdV equation, we consider a finite
domain, on the interval [−xN , xN ], where xN = πM/k and M ∈ N, subject to the
boundary conditions

η(xN ) = η(−xN ), ηx(xN ) = ηx(−xN ), ηxx(xN ) = ηxx(−xN )

σ(xN ) = σ(−xN ). (B 1)

The domain, −xN 6 x 6 xN , is discretised by N ∈ N equally-spaced mesh points

xi =

(
−N

2
+ i− 1

2

)
∆ for i = 1, . . . , N, (B 2)

where ∆ = xN

N−1 is the mesh spacing. The corresponding unknowns are

ηi = η(xi) for i = 1, . . . , N, (B 3)

with forcing

σi = σ(xi) for i = 1, . . . , N. (B 4)

Using the central difference formula for the second-order derivative in equation (1.1) gives
N − 2 algebraic equations

ηi+1 − 2ηi + ηi−1

∆2
+

9

2
η2i − 6µηi = −3σi, (B 5)

at the mesh points i = 2, . . . , N−1. The periodic boundary condition (B 1), and using the
central difference for the second-order derivative of η, provides two additional equations

η1 = ηN (B 6)

and
η2 − 2η1 + ηN−1

∆2
+

9

2
η21 − 6µη1 = −3σ1. (B 7)

Note that the condition (B 1) for σ is automatically satisfied by equation (1.2) at the
endpoints of the domain. The system of equations (B 5)–(B 7) yield N nonlinear algebraic
equations with N unknowns that can be solved using a Newton iterative method for given
values of µ, wavenumber of forcing k, and amplitude of forcing ϵ.
Numerical solutions for the free-surface elevation, η(x), are obtained for given values

of µ, and wavenumber of forcing, k. This is done either by fixing the amplitude of forcing,
ϵ, and allowing the elevation, η(0), to be found as part of the solution, or by fixing η(0)
and allowing ϵ to be found as part of the solution (e.g. the solid curves in figure 2). Using
continuation in the (ϵ, η(0)) plane, we compute the solid curves shown in figure 3, which
(primarily) follow branches that emanate from the three unforced solutions I–III (ϵ = 0,
figure 1) until they: (i) intersect at a turning point in the (ϵ, η(0)) plane with a solution
branch different to one being traversed, (ii) return to the unforced solution along the
same solution branch, or (iii) terminates at a point where we were unable to obtain a
converged numerical solution.
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Appendix C. Non-autonomous theory for solution types I and II

The equations we present for type I and II solutions in the non-autonomous situation
arise from an adaptation of the theory presented in Balasuriya & Binder (2014) to the
spatially periodic situation. For a detailed discussion on the technicalities of the non-
autonomous theory, we refer the reader to that article. Here, we give a brief derivation
of how we recover the type I solution as given in (2.1), the type-II solutions as expressed
in (2.2)–(2.5), and the peak value of the type II solution as given in (2.6).
Balasuriya & Binder (2014) consider the (integrated) Korteweg de-Vries equation

given by (1.1), namely,

ηxx +
9

2
η2 − 6µη = −3σ(x) . (C 1)

The non-autonomousness arising from σ(x) requires the examination of (C 1) in the
appended (η, ηx, x) phase-space. Using this approach, it is shown in equation (11) of
Balasuriya & Binder (2014) that there exists a special trajectory given by

ηI(x) =
3

2
√
6µ

∫ ∞

0

[σ(x− τ) + σ(x+ τ)] e−
√
6µτ dτ +O(ϵ2) . (C 2)

The trajectory (C 2) is a ‘hyperbolic trajectory’ of the system (C1). This means that
it possesses both stable and unstable manifolds, just as the saddle fixed point at the
origin in figure 1b does. The non-autonomous theory outlined in Balasuriya & Binder
(2014) shows that with the inclusion of ϵ, the saddle fixed point perturbs to (C 2) which
retains the presence of stable and unstable manifolds. The difference, however, is that
(C 2) varies with x, unlike the saddle fixed point in the autonomous situation. Moreover,
the theory Balasuriya & Binder (2014) shows that there is only one trajectory which
remains O(ϵ)-close to the saddle point, which is (C 2). This justifies referring to (C 2) as
the ‘near-uniform solution,’ since it is the only solution to (C 1) which remains O(ϵ) over
the unbounded domain of x.
Substituting σ(x) = ϵ cos (kx) as given in (1.2) into (C 2) and performing integrations

leads to (2.1). This is thus the only near-uniform solution for spatially periodic topog-
raphy over an unbounded domain. While this expression is also derivable from a purely
formal ϵ expansion subsituted into (1.1), the non-autonomous theory provides a justifi-
cation for this: the hyperbolic trajectory is the only possible trajectory which can remain
O(ϵ)-close to the origin in both backward and forward x, legitimising an expansion for
x ∈ R (Balasuriya & Padberg-Gehle 2013, 2014).
Next, the near-solitary wave is analysed. The hyperbolicity of (C 2) is associated with

the fact that it possesses both stable and unstable manifolds with respect to the (η, ηx, x)
phase-space. Points on the unstable manifold asymptote to (C 2) as x → −∞, while
those on the stable manifold do so as x → ∞. If there are solutions which asymptote
to (C 2) in both these limits, they must lie on both the stable and unstable manifold.
When there is no forcing, these two manifolds coincide, as shown in figure 1b, to form
the homoclinic trajectory. (In this case, since the system is autonomous, there is no
necessity for including the additional x-greendimension in the phase-space.) Trajectories
on this homoclinic manifold all asymptote to η = 0 as x → ±∞, and these solutions
correspond to the solitary wave solution shown in figure 1a and represented by (1.3).
Actually, figure 1a and (1.3) only show one type II solution whereas there are infinitely
many of them, obtained by shifting this one solution. The freedom of performing this
shift is equivalent to the freedom of choosing an initial condition along the homoclinic
manifold in figure 1b.
Now when σ ̸= 0, the stable and unstable manifolds of the hyperbolic trajectory
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(C 2) no longer need to coincide. To find near-solitary wave solutions, however, we re-
quire trajectories lying on both the stable and unstable manifolds, that is, we need to
seek intersections between these manifolds. To do so, consider an x-slice in the (η, ηx, x)
phase-space. There is a one-dimensional stable manifold emanating from the hyperbolic
point

(
ηI(x), ηIx(x)

)
, which near this point is somewhat close to the homoclinic tra-

jectory visible in figure 1b by standard perturbation arguments. Similarly, there is a
one-dimensional unstable manifold which also near this point is close to the homoclinic
trajectory. To investigate intersections, we measure the signed distance between them
at where these two curves intersect the η-axis, which is near the value 2µ. It is shown
in equation (12) of Balasuriya & Binder (2014) that this distance, scaled by a nonzero
factor, is given by

M(x) =

∫ ∞

−∞
sech 2

(√
3µ

2
τ

)
tanh

(√
3µ

2
τ

)
σ(x+ τ) dτ . (C 3)

This is an example of a Melnikov function (Guckenheimer & Holmes (1983); Rom-Kedar
et al. (1990); Balasuriya (2005); Balasuriya & Finn (2012); Grimshaw & Tian (1994)),
and the x represents the fact that we have taken a slice at a general x-value (the distance
measurement will be different in each x-slice). Putting in σ = ϵ cos (kx), and evaluating
the integrals using contour integration [not shown] eventually leads to the Melnikov
function

M(x) = − k2
√
2

(3µ)
3/2

cosech

(
πk√
6µ

)
sin (kx) (C 4)

This has a simple zero at x = 0, implying that there is a trajectory η(x) which takes
a value of ηx = 0 when x = 0, and which asymptotes to the uniform stream (2.1) in
the limits x → ±∞ since it lies on both the stable and the unstable manifolds of the
hyperbolic trajectory (2.1). This is therefore a homoclinic trajectory (Guckenheimer &
Holmes 1983; Rom-Kedar et al. 1990), which is a near-solitary wave (type II) solu-
tion. Incidentally, the presence of this zero gives us for free a proof—consonant with
the damped fKdV results of Grimshaw & Tian (1994)—that there are nearby chaotic
trajectories in this instance. Our focus here is not on those chaotic solutions, but the
bifurcation behaviour associated with the homoclinic trajectories which are the ‘govern-
ers’ of the chaotic region. Since M(x) is (2π/k)-periodic, there are an infinite number of
homoclinic solutions. This infinitude is associated with two basic families of near-solitary
waves: those situated with their global maximum above x = 2nπ/k or x = 2(n + 1)π/k
for n ∈ Z. If ϵ > 0, the first family corresponds to homoclinic trajectories which are
centred at a crest of the topography σ, while the second family is centred at troughs. If
ϵ < 0, the families interchange. Representatives from these two families are x = 0 and
x = π/k; shifts of these solutions by multiples of 2π/k generate the other members in
each family. If ϵ < 0, the x = 0 family is trough-centred and the x = π/k is crest-centred.
Now, the point is that should there be an intersection between the stable and unstable

manifolds along the η-axis, in a general x-slice, then M(x) needs to be zero. Actually, to
guarantee an intersection for small ϵ we require a little more than that: we need M(x)
to have a simple zero at that x-value (Guckenheimer & Holmes (1983)). This means
that M(x) needs to cross zero at that point, and this guarantees that this intersection
is preserved under the small perturbations resulting from higher-order in ϵ terms which
have been neglected in the analysis. Now, the Melnikov function as computed from the
spatially periodic forcing, (2.2) is easily seen to satisfy this at all the values at which
zeroes occur, since effectively the Melnikov function takes the form M(x) = A sin (kx)
for a constant A. The infinitely many zeroes of M each correspond to an intersection of
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stable and unstable manifolds, and trajectories passing through these intersections will
asymptote to the hyperbolic trajectory (C 2) as x → ±∞. Therefore, there are countably
many homoclinic trajectories in the spatially periodic non-autonomous system. This is in
fact ‘less’ than there were in the autonomous system which possessed uncountably many
such solutions, obtained by arbitrarily sliding the solution given in (1.3). In the spatially
periodic instance, such a sliding can only be done to a discrete set of x-values.
The presence of simple zeroes in the Melnikov function has other interesting impli-

cations, in this situation in which the entire system is periodic in x, with period 2π/k.
In this case, one can define a Poincaré map which maps points from a fixed x0-plane
in the (η, ηx, x) phase-space, to where they go to in the plane x0 + 2π/k. The point
(η, ηx) =

(
ηI(x0), η

I
x((x0)

)
—the intersection of the hyperbolic trajectory in the initial

x-slice—is a fixed point of this Poincaré map, which possesses stable and unstable man-
ifolds. The presence of a simple zero in the Melnikov function implies that there is a
transverse intersection between the stable and unstable manifolds, and indeed there are
infinitely many because of the periodicity of the Melnikov function. This creates ‘lobe’
regions between these manifolds. Upon repeated application of the Poincaré map, these
lobes get elongated as they get closer to the fixed point, influenced its hyperbolicity
which results in exponential stretching in the unstable direction. Moreover, the lobes get
folded as they approach the fixed point. This stretching and folding behaviour results in
the presence of ‘Smale horseshoes’ in the system; the classical Smale-Birkhoff Theorem
(Guckenheimer & Holmes (1983)) tells us that the system in chaotic. Solutions lying in
the lobe regions display seemingly random behaviour as x progresses towards ±∞. The
presence of chaos in spatially periodic systems is already well-known due to the work by
Grimshaw & Tian (1994). Here, we manage to extract the ‘ordered’ type-II from within
among the chaotic solutions.
The next step is to determine the profiles of these type-II solutions, corresponding to

the x-variation of points which lie on both the stable and unstable manifold. This was
determined theoretically, and given in their equations (14) through (17), by Balasuriya &
Binder (2014) for general σ. For each zero of the Melnikov function (C 3) occurring at x =
x̄, the wave-profile was quantified. Here, we simplify these expressions, by focussing on
ϵ cos (kx) for σ. The resulting Melnikov function (C 4) clearly has a zero at x̄ = 0, and we
shall first focus on the homoclinic solution corresponding to this. By adapting the formulæ
of Balasuriya & Binder (2014), and the symmetries associated with the autonomous
solitary wave (1.3), the type-II (near solitary wave) solution can be represented by

ηII(x) = η̄(x) + ϵ
[
ηn(x) + ηt(x)

]
+O(ϵ2) (C 5)

in which η̄ is the fundamental solitary wave solution (1.3), and ηn and ηt are respectively
given by

ηn(x) = − 3η̄xx(x)

η̄x(x)2 + η̄xx(x)2

∫ ∞

|x|
η̄x(τ) cos (kτ) dτ (C 6)

and

ηt(x) = −3η̄x(|x|)
∫ |x|

0

η̄xx(τ) cos (kτ)− Ω(τ)
∫∞
|x| η̄x(λ) cos [k (λ+ τ − x)] dλ

η̄x(τ)2 + η̄xx(τ)2
dτ , (C 7)

where

Ω(τ) :=
[6(1 + µ)− 9η̄(τ)− 5]

[
η̄x(τ)

2 − η̄xx(τ)
2
]

η̄x(τ)2 + η̄xx(τ)2
. (C 8)

These expressions are included in equations (2.2)–(2.5) in the main text. What is of
interest is that, in contrast to the homoclinics associated with general σ as outlined in
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Balasuriya & Binder (2014), the homoclinic solution of (C 5) is symmetric about x = 0.
Now, if ϵ > 0, there is a crest of σ at x = 0, and thus the solution derived above is a
crest-centred near-solitary wave. Moreover, the fact that the translation x → x+ 2nπ/k
for n ∈ Z leaves the governing equation invariant indicates that this solution at x = 0
can be translated to a countable number of other near-solitary wave solutions. This takes
care of the other zeroes of the Melnikov function (C 4) of the form x̄ = 2nπ/k.
Next, consider a candidate from the trough-centred solutions when ϵ > 0, the solu-

tion with x̄ = π/k. Setting a non-symmetric value of x̄ complicates the expressions in
Balasuriya & Binder (2014) substantially, and therefore is best avoided. However, the
crest-centred solution derived in (C 5) can be ‘flipped’ to a trough-centred solution by
the simple strategem of setting ϵ < 0. The resulting trough-centred solution centred at
x̄ = 0 can be then simply translated to x̄ = π/k, or indeed to any x̄ = (2n+1)π/k, where
n ∈ N. Thus, trough-centred solutions can be obtained from (C5) by flipping the sign of ϵ
and translating, relieving us of the necessity of providing additional formulæ. Therefore,
all zeroes of the Melnikov function (C 4)—all single-humped homoclinic solutions—are
also encapsulated within the framework of equation (C 5).
If ϵ < 0, the solution given in (C 5) corresponds to a trough-centred near-solitary

wave, and one can similarly determine all the members of this family, as well as the
crest-centred waves which are exactly ‘out of phase.’
Next, the value of ηII(0) as shown in (2.6) is derived. Notice that the ηt-term disappears

at this value. Using the facts that η̄(0) = 2µ, η̄x(0) = 0 and η̄xx(0) = −6µ2, we then get

ηII(0) = 2µ+
ϵ

2µ

∫ ∞

0

η̄′(τ) cos (kτ) dτ .

Integrating by parts, and then putting in η̄ from (1.3) and simplifying, leads to equa-
tion (2.6), the free-surface elevation at the peak of the type-II solution.
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