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A. Movies

1. Movie 1: The evolution of the liquid meniscus h(r,t), solid height h4(r) and the local volume fraction ®(r,t) of
an evaporating droplet where ®g =5 x 1073 and n = 2.

2. Movie 2: The evolution of the liquid meniscus h(r,t), solid height hs(r) and the local volume fraction ®(r,t) of
an evaporating droplet where &y = 0.05 and n = 2.

3. Movie 3: The evolution of the liquid meniscus h(r,t), solid height hs(r) and the local volume fraction ®(r,t) of
an evaporating droplet where &3 = 0.12 and n = 2.

4. Movie 4: The evolution of the liquid meniscus h(r,t), solid height hs(r) and the local volume fraction ®(r,t) of
an evaporating droplet where @, = 0.05 and n=5.

B. Parameters and initial conditions used in section 4 in the main text

Using the physical parameters for the liquid-air interfacial tension v ~ 0.1N/m, suspension density p ~ 103kg/m3,
gravitational acceleration g ~ 10m/s?, bulk evaporation rate Eg ~ 10~%m/s, solvent viscosity p ~ 10~3Pa-s, diffusion
constant of the micron-sized colloidal spheres Ds ~ 5 x 1071'm? /s, and the equilibrium contact angle 6, o = 15°, we
find the capillary length £.,, ~ 107m and the time scale 7 = 7(1,0c,0) = n€leap/FEo = nel03s. The dependence of
the time scale on n = R?/ éiap is shown in figure S5 in the supplementary data. Using these parameters, the capillary
number is given as Ca = uFEy/y = 1078, and the Péclet number becomes Pe~! = D,/EyR = 5 x 1072, so that
a > 1. We choose the scaled inverse pore size v = 1 since the effect of bigger v on the formation of rings and bands
is insignificant as long as a > v/ holds. This limit is discussed in section D below. The divergence of the evaporation
rate at the contact line is resolved by assuming E(r) =1/y/1 +& —r when r — 1, where € = 0.01.

The initial aspect ratio € = €(n,0.,0) is specified by the hydrostatic height h(r,0), demonstrated in figure S2(a)
in the supplementary data. The initial particle distribution is given by ®(r,0) = (®; — ®q)el"=LO/do 1 &, where
do < 1and L(0)=1.

C. Physical meaning of the closure between the solute and solvent velocities

In dimensionless units, the effective viscosity given by equation (2.5) in the main text becomes

(®) = p2a®h3et
et 1%/ =3 (vah — tanh vah) (®L — @T'+1) "

(S1)

We compare the Krieger-Doherty viscosity (red) and equation (SI) (black) in figure [SII We see that at low and
intermediate ® the two expressions agree very well. When & ~ ®., equation (SI)) yields a finite effective viscosity
set by v. The Krieger-Doherty relation diverges when ® — ®., meaning that the fluid flow from the droplet interior
into the deposit would vanish during drying.
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FIG. S1. The Krieger-Dougherty relation (red) and the effective viscosity relation from the Darcy-Brinkman equation (equa-
tion (S1I), black) are demonstrated against the normalized volume fraction ®/®, . For the latter v =10 and " = 4.
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FIG. S2. Uniform film deposition (o < 1, Pe > 1). (a) The relation between hs(r) and the initial hydrostatic profiles h(r, 0)
as a function of increasing n = RQ/lzap , from bottom to top (6. = 15°). The black curve corresponds to the hydrostatic profile
h(r,t) = 1—7% when < 1. (a) is the solution to Eqgs. (5) and (6) in the main text. Both hs(r) and h(r,0) become more convex
close to the contact line as 1 increases, corresponding to an approximate hydrostatically dominated pressure p (as schematically
demonstrated in figure 1(d) in the main text). (b) The front propagation speed 3(t) = 1/edrtc(r) collapses on a single curve
with the corresponding scaling of the axes, where T' = (®. — ®¢) /P, is the final deposition time of a uniform film (see the main
text.

D. Effect of Marangoni flow on patterning

The Marangoni effect occurs when the surface tension at the liquid-air interface varies due to temperature or
chemical gradients [1]. The variation of the surface tension induces a shear stress at the interface, driving the liquid
toward regions of high surface tension. Here we assume that the chemical properties of the pure solvent are not altered
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FIG. S3. Deposition rate of the rings or broad bands (a > 1, n = 1). The deposition speed B(t) as a function of increasing
®( from top to bottom. The data correspond to ®g € {5 X 1072 U [1.5 x 1072 ,0.12]} in 1.5 x 1072 increments. When &g
increases, (t) decreases for all ¢t and diverges faster at ty .
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FIG. S4. Structural variables in the regime when o = 54/Ca > 1, where ¢ = H/R is the aspect ratio of the drop, and
Ca = uEy/~ is the Capillary number based on the evaporation rate Eo, the fluid viscosity w and the surface tension 7. (a) the
band width Ar, (b) the effective band width Arcsy, (c) the dimensionless distance between the radius of the droplet and the
meniscus touch-down location 7¢ , and (d) the maximum deposition height Amas , as a function of ®g and n = R? / éﬁw . Arrows
denote the direction in which 7 increases, where n € {0.1,1,2,3}. Axes are given in the logarithmic scale.
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FIG. S5. The time scale 7 = 7(1, 0c,0) = neleap/ Eo of evaporation as a function of n at the ring formation (o > 1).

due to colloids or other impurities, and hence only focus on the effect of temperature gradients. In the presence of a
nonuniform surface tension profile, the viscous stress inside the liquid modifies to

uov/0z = 0p/or(z — h) + dv/0r. (52)

Following the discussion in section 1 of the main text and applying the chain rule 9v/0r = 0~/9T x 9T /Or , the scaling
form of this expression is given as paEqg/He = yHe/R*+ BATy/R . Here 8 = 0v/dT is a property of the liquid (8 < 0
in general) and ATy = Ty — Ty is the temperature difference between the contact line (72) and top of the droplet
center (T7). Then, the scaled inverse capillary number modifies to apn, = a — eMa, where Ma = —8AToe/Epp is
the Marangoni number. When ATy > 0, then Ma > 0 and the Marangoni effect will suppress the ring formation as
there arises a recirculating flow and aj;, will become smaller or negative. This behaviour is particularly observed at
sufficiently high contact angles and with solvents such as octane |2]. However, when AT < 0, then the ring formation
will be reinforced since apr, > «. This especially occurs for low contact angles |3] and towards the end of drying. We
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®o =5 x 107°[[0.18]—0.03|—1.36] —0.10
Py =0.05 0.33]—-0.02|—-0.62|—0.05
Py =0.12 0.45{—-0.04|—-0.37| —0.1

TABLE S1. The scaling of Ar and § as a function of ¢ initially, and in ¢ty — ¢ close to the meniscus touch-down, as extracted
numerically for different volume fractions (n = 0.1). In dimensionless units, Ar; ~ ¢**? is the initial ring width, Ary; ~
(ty —t)**/ the final ring width, 8; ~ ¢t°** the initial deposition rate, 5y ~ (ty —t)°*/ the final deposition rate. The final time
of meniscus touch-down is ty ~ 0.2H/Ey .

n=01n=1n=2{n=3
o 0.579 | 0.585 |0.602|0.624
aers|| 0.668 [0.666™| 0.66 |0.657
B
X

0.429 | 0.417 |{0.387|0.357
0.441 | 0.436 |0.426|0.412

TABLE S2. The scaling of structural variables as a function of ®¢ (n = RZ/KEQPL as extracted from the slopes of the nearly
linear profiles in figure in logarithmic scale. In dimensionless units, Ar ~ ®F , Aress ~ @ge” , (1 —ro) ~ <I>€ s hmaz ~ @F .

have not taken the Marangoni effect into account in our analysis since it was found to be weak for water [2], which
the material parameters in our analysis refers to.

E. Scaling of the ring width and deposition as a function of time (o> 1)

When n <« 1, the numerical scaling laws of the deposition speed § as well as the ring width Ar in early and late
times for a range of volume fractions is given in Table S1.

F. Scaling of structural variables as a function of initial volume fraction (a > 1)

In this section we will investigate the dependence of the structural variables on the initial colloidal volume fraction
®g . These structural variables are; Ar (the ring width), Arers (the effective ring width), the distance between the
contact line and the touch-down location 1 — ro/R, and the maximum deposit height h,q. . The effective ring width
Arery = Ar 4 dr accounts for the colloids in the left-over fluid tail, which are laid down after meniscus break-up.
Thus, these particles also contribute to the width of the deposit at a length ér. We define dr in real units as

or =

1 T
& /TO rdr®(r)h(r), (S3)

where

_ 1 i
h= R =70) /TO rdrh(r), (S4)

and 7; = 7;(ty) is the final position of the deposition front at the meniscus touch-down (see main text). The contact
line radius is taken to be unity (R = 1) in dimensionless units.

The scaling exponents are given in Table IT as a function of n = R?*/£2, . At n =1, acyy = 0.666 (denoted by *)
agrees well with experiments [4].
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