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A. Movies

1. Movie 1: The evolution of the liquid meniscus h(r, t) , solid height hs(r) and the local volume fraction Φ(r, t) of
an evaporating droplet where Φ0 = 5× 10−3 and η = 2 .

2. Movie 2: The evolution of the liquid meniscus h(r, t) , solid height hs(r) and the local volume fraction Φ(r, t) of
an evaporating droplet where Φ0 = 0.05 and η = 2 .

3. Movie 3: The evolution of the liquid meniscus h(r, t) , solid height hs(r) and the local volume fraction Φ(r, t) of
an evaporating droplet where Φ0 = 0.12 and η = 2 .

4. Movie 4: The evolution of the liquid meniscus h(r, t) , solid height hs(r) and the local volume fraction Φ(r, t) of
an evaporating droplet where Φ0 = 0.05 and η = 5 .

B. Parameters and initial conditions used in section 4 in the main text

Using the physical parameters for the liquid-air interfacial tension γ ∼ 0.1N/m, suspension density ρ ∼ 103kg/m3,
gravitational acceleration g ∼ 10m/s2, bulk evaporation rate E0 ∼ 10−6m/s, solvent viscosity µ ∼ 10−3Pa·s, diffusion
constant of the micron-sized colloidal spheres Ds ∼ 5× 10−11m2/s, and the equilibrium contact angle θe,0 = 15o, we
find the capillary length ℓcap ∼ 10−3m and the time scale τ = τ(η, θe,0) = ηǫℓcap/E0 = ηǫ103s. The dependence of
the time scale on η ≡ R2/ℓ2cap is shown in figure S5 in the supplementary data. Using these parameters, the capillary

number is given as Ca ≡ µE0/γ = 10−8, and the Péclet number becomes Pe−1 ≡ Ds/E0R = 5 × 10−2, so that
α ≫ 1 . We choose the scaled inverse pore size ν = 1 since the effect of bigger ν on the formation of rings and bands
is insignificant as long as α ≫ ν2 holds. This limit is discussed in section D below. The divergence of the evaporation
rate at the contact line is resolved by assuming E(r) = 1/

√
1 + ε̄− r when r → 1 , where ε̄ = 0.01 .

The initial aspect ratio ǫ = ǫ(η, θe,0) is specified by the hydrostatic height h(r, 0) , demonstrated in figure S2(a)

in the supplementary data. The initial particle distribution is given by Φ(r, 0) = (Φi − Φ0)e
[r−L(0)]/d0 + Φ0, where

d0 ≪ 1 and L(0) = 1 .

C. Physical meaning of the closure between the solute and solvent velocities

In dimensionless units, the effective viscosity given by equation (2.5) in the main text becomes

µeff (Φ) =
µν3a3h3ΦΓ

c

3 (νah− tanh νah) (ΦΓ
c − ΦΓ+1)

. (S1)

We compare the Krieger-Doherty viscosity (red) and equation (S1) (black) in figure S1. We see that at low and
intermediate Φ the two expressions agree very well. When Φ ∼ Φc , equation (S1) yields a finite effective viscosity
set by ν . The Krieger-Doherty relation diverges when Φ → Φc , meaning that the fluid flow from the droplet interior
into the deposit would vanish during drying.
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FIG. S1. The Krieger-Dougherty relation (red) and the effective viscosity relation from the Darcy-Brinkman equation (equa-
tion (S1), black) are demonstrated against the normalized volume fraction Φ/Φc . For the latter ν ≡ 10 and Γ = 4 .
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FIG. S2. Uniform film deposition (α ≪ 1 , P e ≫ 1). (a) The relation between hs(r) and the initial hydrostatic profiles h(r, 0)
as a function of increasing η ≡ R2/l2cap , from bottom to top (θe = 15o). The black curve corresponds to the hydrostatic profile
h(r, t) = 1−r2 when η ≪ 1 . (a) is the solution to Eqs. (5) and (6) in the main text. Both hs(r) and h(r, 0) become more convex
close to the contact line as η increases, corresponding to an approximate hydrostatically dominated pressure p (as schematically
demonstrated in figure 1(d) in the main text). (b) The front propagation speed β(t) = 1/ǫ∂rtc(r) collapses on a single curve
with the corresponding scaling of the axes, where T ≡ (Φc −Φ0)/Φc is the final deposition time of a uniform film (see the main
text.

D. Effect of Marangoni flow on patterning

The Marangoni effect occurs when the surface tension at the liquid-air interface varies due to temperature or
chemical gradients [1]. The variation of the surface tension induces a shear stress at the interface, driving the liquid
toward regions of high surface tension. Here we assume that the chemical properties of the pure solvent are not altered

0 0.1 0.2
−30

−20

−10

0

t/τ

β
(r
,t
)
≡

C
/
E

0

FIG. S3. Deposition rate of the rings or broad bands (α ≫ 1 , η = 1). The deposition speed β(t) as a function of increasing
Φ0 from top to bottom. The data correspond to Φ0 ∈ {5 × 10−3 ∪

[

1.5× 10−2 , 0.12
]

} in 1.5 × 10−2 increments. When Φ0

increases, β(t) decreases for all t and diverges faster at tf .
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FIG. S4. Structural variables in the regime when α ≡ ǫ4/Ca ≫ 1 , where ǫ = H/R is the aspect ratio of the drop, and
Ca = µE0/γ is the Capillary number based on the evaporation rate E0, the fluid viscosity µ and the surface tension γ. (a) the
band width ∆r, (b) the effective band width ∆reff , (c) the dimensionless distance between the radius of the droplet and the
meniscus touch-down location r0 , and (d) the maximum deposition height hmax , as a function of Φ0 and η ≡ R2/ℓ2cap . Arrows
denote the direction in which η increases, where η ∈ {0.1, 1, 2, 3} . Axes are given in the logarithmic scale.
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FIG. S5. The time scale τ = τ (η, θe,0) = ηǫℓcap/E0 of evaporation as a function of η at the ring formation (α ≫ 1).

due to colloids or other impurities, and hence only focus on the effect of temperature gradients. In the presence of a
nonuniform surface tension profile, the viscous stress inside the liquid modifies to

µ∂v/∂z = ∂p/∂r(z − h) + ∂γ/∂r . (S2)

Following the discussion in section 1 of the main text and applying the chain rule ∂γ/∂r = ∂γ/∂T×∂T/∂r , the scaling
form of this expression is given as µαE0/Hǫ = γHǫ/R2+β∆T0/R . Here β ≡ ∂γ/∂T is a property of the liquid (β < 0
in general) and ∆T0 ≡ T2 − T1 is the temperature difference between the contact line (T2) and top of the droplet
center (T1). Then, the scaled inverse capillary number modifies to αMa = α − ǫMa , where Ma ≡ −β∆T0ǫ/E0µ is
the Marangoni number. When ∆T0 > 0 , then Ma > 0 and the Marangoni effect will suppress the ring formation as
there arises a recirculating flow and αMa will become smaller or negative. This behaviour is particularly observed at
sufficiently high contact angles and with solvents such as octane [2]. However, when ∆T0 < 0 , then the ring formation
will be reinforced since αMa > α . This especially occurs for low contact angles [3] and towards the end of drying. We
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η = 0.1 αt,i αt,f σt,i σt,f

Φ0 = 5× 10−3 0.18 −0.03 −1.36 −0.10
Φ0 = 0.05 0.33 −0.02 −0.62 −0.05
Φ0 = 0.12 0.45 −0.04 −0.37 −0.1

TABLE S1. The scaling of ∆r and β as a function of t initially, and in tf − t close to the meniscus touch-down, as extracted
numerically for different volume fractions (η = 0.1). In dimensionless units, ∆ri ∼ tαt,i is the initial ring width, ∆rf ∼
(tf − t)αt,f the final ring width, βi ∼ tσt,i the initial deposition rate, βf ∼ (tf − t)σt,f the final deposition rate. The final time
of meniscus touch-down is tf ∼ 0.2H/E0 .

η = 0.1 η = 1 η = 2 η = 3

α 0.579 0.585 0.602 0.624
αeff 0.668 0.666∗ 0.66 0.657
β 0.429 0.417 0.387 0.357
χ 0.441 0.436 0.426 0.412

TABLE S2. The scaling of structural variables as a function of Φ0 (η ≡ R2/ℓ2cap), as extracted from the slopes of the nearly

linear profiles in figure S4 in logarithmic scale. In dimensionless units, ∆r ∼ Φα
0 , ∆reff ∼ Φ

αeff

0
, (1− r0) ∼ Φβ

0
, hmax ∼ Φχ

0
.

have not taken the Marangoni effect into account in our analysis since it was found to be weak for water [2], which
the material parameters in our analysis refers to.

E. Scaling of the ring width and deposition as a function of time (α ≫ 1)

When η ≪ 1 , the numerical scaling laws of the deposition speed β as well as the ring width ∆r in early and late
times for a range of volume fractions is given in Table S1.

F. Scaling of structural variables as a function of initial volume fraction (α ≫ 1)

In this section we will investigate the dependence of the structural variables on the initial colloidal volume fraction
Φ0 . These structural variables are; ∆r (the ring width), ∆reff (the effective ring width), the distance between the
contact line and the touch-down location 1− r0/R, and the maximum deposit height hmax . The effective ring width
∆reff ≡ ∆r + δr accounts for the colloids in the left-over fluid tail, which are laid down after meniscus break-up.
Thus, these particles also contribute to the width of the deposit at a length δr . We define δr in real units as

δr ≡
1

Rh̄

∫ ri

r0

rdrΦ(r)h(r) , (S3)

where

h̄ ≡
1

R(ri − r0)

∫ ri

r0

rdrh(r) , (S4)

and ri = ri(tf ) is the final position of the deposition front at the meniscus touch-down (see main text). The contact
line radius is taken to be unity (R = 1) in dimensionless units.
The scaling exponents are given in Table II as a function of η = R2/ℓ2cap . At η = 1, αeff = 0.666 (denoted by ∗)

agrees well with experiments [4].
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