Supplementary Materials: "On damping of two-dimensional piston-mode sloshing in a rectangular moonpool under forced heave motions"

O. M. Faltinsen and A. N. Timokha
Centre for Autonomous Marine Operations and Systems, Department of Marine Technology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway

To provide a self-contained narrative, the Supplementary materials repeat details of the Galerkin method by Faltinsen et al. (2007) with small modifications which allow for finding the primary harmonics of the steady-state solution of the quasi-linear boundary value problem. The method focuses on the first harmonics of the quasi-linear problem. All new quantities relative to Faltinsen et al. (2007) are framed.

We construct the 2π-periodic solution of the two-dimensional quasi-linear boundary (2.4)-(2.8) in the mean liquid domain Q_{0} shown in figure 1 with a focus on the $\cos t$ and $\sin t$ harmonics. The method employs dividing Q_{0} into four subdomains I, II, III and IV by auxiliary interfaces T_{1}, T_{2} and T_{3} and setting appropriate transmission conditions on them and accounting for that the motions inside the $(I I+I I I+I V)$-domain are described by

$$
\begin{equation*}
\psi_{I I-I V}(x, z, t)=\left.\psi\right|_{(x, z) \in(I I+I I I+I V)}=\varphi^{(1)}(x, z) \cos t+\varphi^{(2)}(x, z) \sin t \tag{0.1}
\end{equation*}
$$

This makes it possible to define the Neumann traces of $\varphi^{(i)}, i=1,2$ on $T_{j}, j=1,2,3$ as follows

$$
\begin{align*}
& T_{1}: \quad \frac{\partial \varphi^{(i)}}{\partial x}(-b, z)=w_{1}^{(i)}(z) \quad-h<z<-d, \tag{0.2a}\\
& T_{2}: \quad \frac{\partial \varphi^{(i)}}{\partial x}\left(-\frac{1}{2}, z\right)=w_{2}^{(i)}(z) \quad-h<z<-d, \tag{0.2b}\\
& T_{3}: \quad \frac{\partial \varphi^{(i)}}{\partial z}(x,-d)=w_{3}^{(i)}(x) \quad-\frac{1}{2}<x<0, \tag{0.2c}
\end{align*}
$$

(the six functions $w_{j}^{(i)}, i=1,2, j=1,2,3$ belong to admissible functional spaces which provide the correctness of the corresponding boundary value problems) and reduce the original wave problem to a system of integral equations relative to $w_{j}^{(i)}, i=1,2, j=$ $1,2,3$.

In contrast to $(0.1), \psi_{I}(x, z, t)=\left.\psi\right|_{(x, z) \in I}$ should include an outgoing-wave component. By separating spatial variables in the semi-infinite band and matching with solution (0.1) and the Neumann-traces $(0.2 a)$, one obtains the following solution in I as a function of

Figure 1. Geometric notations to the dimensionless problem (2.6)-(2.10).

$$
\begin{align*}
& w_{1}^{(1)} \text { and } w_{1}^{(2)} \\
& \begin{aligned}
& \psi_{I}(x, z, t)=\int_{-h}^{-d}\left(w_{1}^{(1)}\left(z_{0}\right) \cos t+w_{1}^{(2)}\left(z_{0}\right) \sin t\right) \mathcal{G}_{I}\left(x, z ; z_{0}\right) d z_{0}+ \\
&+ \frac{\cosh (\mathcal{K}(z+h))}{\mathcal{K} N_{0}}\left[\sin (\mathcal{K}(x+b)+t) \int_{-h}^{-d} w_{1}^{(1)}\left(z_{0}\right) \cosh \left(\mathcal{K}\left(z_{0}+h\right)\right) d z_{0}-\right. \\
&\left.-\cos (\mathcal{K}(x+b)+t) \int_{-h}^{-d} w_{1}^{(2)}\left(z_{0}\right) \cosh \left(\mathcal{K}\left(z_{0}+h\right)\right) d z_{0}\right]
\end{aligned}
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{G}_{I}\left(x, z ; z_{0}\right)=\sum_{j=1}^{\infty} \frac{\cos \left(\kappa_{j}^{(1)}\left(z_{0}+h\right)\right) \cos \left(\kappa_{j}^{(1)}(z+h)\right)}{\kappa_{j}^{(1)} N_{j}^{(1)}} \exp \left(\kappa_{j}^{(1)}(x+b)\right) \tag{0.4}
\end{equation*}
$$

\mathcal{K} is the root of the transcendental equation

$$
\begin{equation*}
\mathcal{K} \tanh (\mathcal{K} h)=\Lambda \quad \text { and } \quad N_{0}=\frac{1}{2} h(1+\sinh (2 \mathcal{K} h) /(2 \mathcal{K} h)) \tag{0.5}
\end{equation*}
$$

and $\left\{\kappa_{i}^{(1)}\right\}$ are the positive roots of

$$
\begin{equation*}
\kappa_{i}^{(1)} \tan \left(\kappa_{i}^{(1)} h\right)=-\Lambda \quad \text { and } \quad N_{i}^{(1)}=\frac{1}{2} h\left(1+\sin \left(2 \kappa_{i}^{(1)} h\right) /\left(2 \kappa_{i}^{(1)} h\right)\right), \quad i \geqslant 1 . \tag{0.6}
\end{equation*}
$$

The pairs $\left(w_{1}^{(i)}, w_{2}^{(i)}\right), i=1,2$, constitute part of the Neumann boundary value problems for the Laplace equation in $I I$. These problems have solutions (generally, to within unknown constants $\mathcal{A}_{-1}^{(i)}$), if and only if, the following solvability conditions is satisfied

$$
\begin{equation*}
-\int_{-h}^{-d} w_{1}^{(i)}\left(z_{0}\right) d z_{0}+\int_{-h}^{-d} w_{2}^{(i)}\left(z_{0}\right) d z_{0}+\epsilon \delta_{2 i} \underbrace{\int_{-b}^{-\frac{1}{2}} 1 d x_{0}}_{\left(b-\frac{1}{2}\right)}=0, \quad i=1,2 \tag{0.7}
\end{equation*}
$$

($\delta_{i j}$ is the Kronecker delta). In a physical sense, Eq. (0.7) states instantaneous inflow/outflow balance through I. If (0.7) is true,

$$
\varphi_{I I}^{(i)}(x, z)=\mathcal{A}_{-1}^{(i)}+\epsilon \delta_{2 i} \frac{(z+h)^{2}-(x+b)^{2}}{2(h-d)}+
$$

$$
\begin{equation*}
+\int_{-h}^{-d}\left[w_{1}^{(i)}\left(z_{0}\right) \mathcal{G}_{I I}^{(1)}\left(x, z ; z_{0}\right)+w_{2}^{(i)}\left(z_{0}\right) \mathcal{G}_{I I}^{(2)}\left(x, z ; z_{0}\right)\right] d z_{0}, \quad i=1,2 \tag{0.8}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{G}_{I I}^{(1)}\left(x, z ; z_{0}\right)= & \frac{x}{h-d}- \\
& -\sum_{j=1}^{\infty} \frac{\cos \left(\kappa_{j}^{(2)}\left(z_{0}+h\right)\right) \cos \left(\kappa_{j}^{(2)}(z+h)\right)}{\kappa_{j}^{(2)} N_{j}^{(2)}} \cdot \frac{\cosh \left(\kappa_{j}^{(2)}\left(x+\frac{1}{2}\right)\right)}{\cosh \left(\kappa_{j}^{(2)}\left(b-\frac{1}{2}\right)\right)}, \tag{0.9a}\\
\mathcal{G}_{I I}^{(2)}\left(x, z ; z_{0}\right)= & \sum_{j=1}^{\infty} \frac{\cos \left(\kappa_{j}^{(2)}\left(z_{0}+h\right)\right) \cos \left(\kappa_{j}^{(2)}(z+h)\right)}{\kappa_{j}^{(2)} N_{j}^{(2)}} \cdot \frac{\cosh \left(\kappa_{j}^{(2)}(x+b)\right)}{\cosh \left(\kappa_{j}^{(2)}\left(b-\frac{1}{2}\right)\right)} \tag{0.9b}
\end{align*}
$$

with

$$
\begin{equation*}
\kappa_{j}^{(2)}=\frac{\pi j}{h-d} ; \quad N_{j}^{(2)}=\frac{1}{2}(h-d) \tanh \left(\kappa_{j}^{(2)}\left(b-\frac{1}{2}\right)\right), \quad j \geqslant 1 . \tag{0.10}
\end{equation*}
$$

Even though the solutions (0.8) are formally determined to within $\mathcal{A}_{-1}^{(i)}$, the actual values of these constants must be computed via the Dirichlet-transmission conditions on T_{1}, T_{2} and T_{3}.

Analogously, $\left(w_{2}^{(i)}, w_{3}^{(i)}\right), i=1,2$, yield part of the Neumann boundary value problem in $I I I$, which needs the solvability condition

$$
\begin{equation*}
\int_{-h}^{-d} w_{2}^{(i)}\left(z_{0}\right) d z_{0}-\int_{-\frac{1}{2}}^{0} w_{3}^{(i)}\left(x_{0}\right) d x_{0}=0, \quad i=1,2 . \tag{0.11}
\end{equation*}
$$

Its solution is

$$
\begin{align*}
\varphi_{I I I}^{(i)}(x, z)=\mathcal{A}_{-2}^{(i)}+\int_{-h}^{-d} w_{2}^{(i)}\left(z_{0}\right) & \mathcal{G}_{I I I}^{(1)}\left(x, z ; z_{0}\right) d z_{0}+ \\
& +\int_{-\frac{1}{2}}^{0} w_{3}^{(i)}\left(x_{0}\right) \mathcal{G}_{I I I}^{(2)}\left(x, z ; x_{0}\right) d x_{0}, \quad i=1,2 \tag{0.12}
\end{align*}
$$

where $\mathcal{A}_{-2}^{(i)}$ are also computed from the Dirichlet transmission conditions and

$$
\begin{align*}
& \mathcal{G}_{I I I}^{(1)}\left(x, z ; z_{0}\right)=-\frac{x^{2}-(z+h)^{2}}{h}- \\
&-d \tag{0.13a}\\
&-\sum_{j=1}^{\infty} \frac{\cos \left(\kappa_{j}^{(2)}\left(z_{0}+h\right)\right) \cos \left(\kappa_{j}^{(2)}(z+h)\right)}{\kappa_{j}^{(2)} N_{j}^{(3)}} \cdot \frac{\cosh \left(\kappa_{j}^{(2)} x\right)}{\cosh \left(\frac{1}{2} \kappa_{j}^{(2)}\right)}, \tag{0.13b}\\
& \mathcal{G}_{I I I}^{(2)}\left(x, z ; x_{0}\right)= \sum_{j=1}^{\infty} \frac{\cos \left(\kappa_{j}^{(3)} x_{0}\right) \cos \left(\kappa_{j}^{(3)} x\right)}{\kappa_{j}^{(3)} N_{j}^{(4)}} \cdot \frac{\cosh \left(\kappa_{j}^{(3)}(z+d)\right)}{\cosh \left(\kappa_{j}^{(3)}(h-d)\right)}
\end{align*}
$$

with

$$
\begin{equation*}
\kappa_{j}^{(3)}=2 \pi j ; \quad N_{j}^{(3)}=\frac{1}{2}(h-d) \tanh \left(\frac{1}{2} \kappa_{j}^{(2)}\right) ; \quad N_{j}^{(4)}=\frac{1}{4} \tanh \left(\kappa_{j}^{(3)}(h-d)\right), \quad j \geqslant 1 \tag{0.14}
\end{equation*}
$$

Finally, the mixed boundary value problems in $I V$ involving the Neumann boundary condition ($0.2 c$) and extra nonlinear boundary condition on Σ_{02} have to be solved. It has a unique solution if and only if the analogous homogeneous problems have only trivial solutions. This occurs when

$$
\begin{equation*}
\Lambda \neq \kappa_{j}^{(3)} \tanh \left(\kappa_{j}^{(3)} d\right), \quad j \geqslant 1 \tag{0.15}
\end{equation*}
$$

The $\cos t$ and $\sin t$ components of the vertical velocity on T_{4} takes the form

$$
\begin{equation*}
\left.\frac{\partial \psi_{I V}}{\partial z}\right|_{T_{4}}=w_{3}^{(1)}(x) \cos t+w_{3}^{(2)}(x) \sin t \tag{0.16}
\end{equation*}
$$

so that the mean relative velocity in the right-hand side of the dynamic boundary condition is

$$
\begin{equation*}
u_{0}(t)=\left.\int_{T_{4}} \frac{\partial \psi_{I V}}{\partial z}\right|_{T_{4}} \mathrm{~d} x=a_{1} \cos t+\left(a_{2}-\epsilon\right) \sin t ; \quad a_{i}=2 \int_{-1 / 2}^{0} w_{3}^{(i)}(x) \mathrm{d} x . \tag{0.17}
\end{equation*}
$$

Substituting (0.17) into the dynamic boundary condition, extracting the first harmonics and combining it with the kinematic conditions leads to the Robin boundary condition

$$
\begin{equation*}
\Lambda \frac{\partial^{2} \psi}{\partial t^{2}}+\frac{\partial \psi}{\partial z}=\underbrace{\Lambda_{*} \frac{2}{3 \pi} \Lambda\left(C_{0}^{-1}-\left(2 b_{*}\right)^{-1}\right)^{2}}_{\beta} \underbrace{\sqrt{a_{1}^{2}+\left(a_{1}^{2}-\epsilon\right)^{2}}}_{\hat{u}_{0}=\xi\left(a_{1}, a_{2}\right)}[\underbrace{\left(a_{2}-\epsilon\right)}_{\Xi_{1}} \cos t+\underbrace{\left(-a_{2}\right)}_{\Xi_{2}} \sin t] \tag{0.18}
\end{equation*}
$$

The mixed boundary value problems in IV have the following solution

$$
\begin{equation*}
\varphi_{I V}^{(i)}(x, z)=-\Xi_{i}+\int_{-\frac{1}{2}}^{0} w_{3}^{(i)}\left(x_{0}\right) \mathcal{G}_{I V}\left(x, z ; x_{0}\right) d x_{0}, \quad i=1,2 \tag{0.19}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{G}_{I V}\left(x, y ; x_{0}\right)= & 2\left(z+\frac{1}{\Lambda}\right)+ \\
& +\sum_{j=1}^{\infty} \frac{\cos \left(\kappa_{j}^{(3)} x_{0}\right) \cos \left(\kappa_{j}^{(3)} x\right)}{\kappa_{j}^{(3)} N_{j}^{(5)}} \cdot \frac{\kappa_{j}^{(3)} \cosh \left(\kappa_{j}^{(3)} z\right)+\Lambda \sinh \left(\kappa_{j}^{(3)} z\right)}{\kappa_{j}^{(3)} \cosh \left(\kappa_{j}^{(3)} d\right)} \tag{0.20}
\end{align*}
$$

and

$$
\begin{equation*}
N_{j}^{(5)}=\frac{1}{4}\left[\frac{\Lambda}{\kappa_{j}^{(3)}}-\tanh \left(\kappa_{j}^{(3)} d\right)\right] \tag{0.21}
\end{equation*}
$$

The kernel (0.20) becomes unbounded as Λ tends to the critical values defined by (0.15) because this limit causes $N_{j}^{(5)} \rightarrow 0$ for a certain j.

The problem reduces to integral equations with respect to $w_{j}^{(i)}, j=1,2,3 ; i=1,2$, by using the Dirichlet transmission conditions on T_{j}, which imply

$$
\begin{equation*}
\psi_{I}(-b, z, t)=\varphi_{I I}^{(1)}(-b, z) \cos t+\varphi_{I I}^{(2)}(-b, z) \sin t, \quad-h<z<-d, \quad t \geqslant 0 \tag{0.22}
\end{equation*}
$$

as well as

$$
\begin{array}{ll}
\varphi_{I I}^{(i)}\left(-\frac{1}{2}, z\right)=\varphi_{I I I}^{(i)}\left(-\frac{1}{2}, z\right), & -h<z-d, \\
\varphi_{I I I}^{(i)}(x,-d)=\varphi_{I V}^{(i)}(x,-d), & -\frac{1}{2}<x<0, \quad i=1,2 \tag{0.23}
\end{array}
$$

Together with the solvability conditions (0.7) and (0.11), Eqs. (0.22) and (0.23) yield
the following system of integral equations

$$
\begin{gather*}
\int_{-h}^{-d} w_{1}^{(1)}\left(z_{0}\right) \mathcal{K}_{1,1}\left(z, z_{0}\right) d z_{0}+\int_{-h}^{-d} w_{2}^{(1)}\left(z_{0}\right) \mathcal{K}_{1,2}\left(z, z_{0}\right) d z_{0}-\mathcal{A}_{-1}^{(1)-} \\
-\frac{\cosh (\mathcal{K}(z+h))}{\mathcal{K} N_{0}} \int_{-h}^{-d} w_{1}^{(2)}\left(z_{0}\right) \cosh \left(\mathcal{K}\left(z_{0}+d\right)\right) d z_{0}=0, \\
\int_{-h}^{-d} w_{1}^{(2)}\left(z_{0}\right) \mathcal{K}_{1,1}\left(z, z_{0}\right) d z_{0}+\int_{-h}^{-d} w_{2}^{(2)}\left(z_{0}\right) \mathcal{K}_{1,2}\left(z, z_{0}\right) d z_{0}-\mathcal{A}_{-1}^{(2)}+ \tag{0.24a}\\
+\frac{\cosh (\mathcal{K}(z+h))}{\mathcal{K} N_{0}} \int_{-h}^{-d} w_{1}^{(1)}\left(z_{0}\right) \cosh \left(\mathcal{K}\left(z_{0}+h\right)\right) d z_{0}=\epsilon \frac{(z+h)^{2}}{2(h-d)}, \\
-h<z<-d, \\
\int_{-h}^{-d} w_{1}^{(i)}\left(z_{0}\right) \mathcal{K}_{2,1}\left(z, z_{0}\right) d z_{0}+\int_{-h}^{-d} w_{2}^{(i)}\left(z_{0}\right) \mathcal{K}_{2,2}\left(z, z_{0}\right) d z_{0}+\int_{-\frac{1}{2}}^{0} w_{3}^{(i)}\left(x_{0}\right) \mathcal{K}_{2,3}\left(z, x_{0}\right) d x_{0}+ \\
\int_{-h}^{(i)}=-\epsilon \delta_{2 i} \frac{(z+h)^{2}-\left(b-\frac{1}{2}\right)^{2}}{2(h-d)},-d<z<-h, \quad(0.24 b) \tag{0.24b}\\
w_{2}^{(i)}\left(z_{0}\right) \mathcal{K}_{3,2}\left(x, z_{0}\right) d z_{0}+\int_{-\frac{1}{2}}^{0} w_{3}^{(i)}\left(x_{0}\right) \mathcal{K}_{3,3}\left(x, x_{0}\right) d x_{0}+\mathcal{A}_{-2}^{(i)}-\Xi_{i}=0,-\frac{1}{2}<x<0, \tag{0.24c}\\
\int_{-h}^{-d} w_{1}^{(i)}\left(z_{0}\right) d z_{0}-\int_{-h}^{-d} w_{2}^{(i)}\left(z_{0}\right) d z_{0}=\epsilon \delta_{2 i}\left(b-\frac{1}{2}\right), \tag{0.24d}
\end{gather*}
$$

for $i=1,2$. The kernels are defined as follows

$$
\begin{align*}
& \mathcal{K}_{1,1}\left(z, z_{0}\right)=\mathcal{G}_{I}\left(-b, z ; z_{0}\right)-\mathcal{G}_{I I}^{(1)}\left(-b, z ; z_{0}\right)=\frac{b}{h-d}+ \\
& +\sum_{j=1}^{\infty} \frac{\cos \left(\kappa_{j}^{(1)}\left(z_{0}+h\right)\right) \cos \left(\kappa_{j}^{(1)}(z+h)\right)}{\kappa_{j}^{(1)} N_{j}^{(1)}}+\sum_{j=1}^{\infty} \frac{\cos \left(\kappa_{j}^{(2)}\left(z_{0}+h\right)\right) \cos \left(\kappa_{j}^{(2)}(z+h)\right)}{\kappa_{j}^{(2)} N_{j}^{(2)}}, \tag{0.25a}\\
& \mathcal{K}_{1,2}\left(z, z_{0}\right)=-\mathcal{G}_{I I}^{(2)}\left(-b, z ; z_{0}\right)=-\sum_{j=1}^{\infty} \frac{\cos \left(\kappa_{j}^{(2)}\left(z_{0}+h\right)\right) \cos \left(\kappa_{j}^{(2)}(z+h)\right)}{\kappa_{j}^{(2)} N_{j}^{(2)} \cosh \left(\kappa_{j}^{(2)}\left(b-\frac{1}{2}\right)\right)}, \tag{0.25b}\\
& \mathcal{K}_{2,1}\left(z, z_{0}\right)=\mathcal{G}_{I I}^{(1)}\left(-\frac{1}{2}, z ; z_{0}\right)= \\
& =-\frac{1}{2(h-d)}-\sum_{j=1}^{\infty} \frac{\cos \left(\kappa_{j}^{(2)}\left(z_{0}+h\right)\right) \cos \left(\kappa_{j}^{(2)}(z+h)\right)}{\kappa_{j}^{(2)} N_{j}^{(2)} \cosh \left(\kappa_{j}^{(2)}\left(b-\frac{1}{2}\right)\right)}, \tag{0.25c}
\end{align*}
$$

$$
\begin{gather*}
\mathcal{K}_{2,2}\left(z, z_{0}\right)=\mathcal{G}_{I I}^{(2)}\left(-\frac{1}{2}, z ; z_{0}\right)-\mathcal{G}_{I I I}^{(1)}\left(-\frac{1}{2}, z ; z_{0}\right)=-\frac{(z+h)^{2}}{h-d}+\frac{1}{4(h-d)}+ \\
+\sum_{j=1}^{\infty} \frac{\cos \left(\kappa_{j}^{(2)}\left(z_{0}+h\right)\right) \cos \left(\kappa_{j}^{(2)}(z+h)\right)}{\kappa_{j}^{(2)}}\left[\frac{1}{N_{j}^{(2)}}+\frac{1}{N_{j}^{(3)}}\right] \tag{0.25d}\\
\begin{aligned}
\mathcal{K}_{2,3}\left(z, x_{0}\right)=-\mathcal{G}_{I I I}^{(2)}\left(-\frac{1}{2}, z ; x_{0}\right)=-\sum_{j=1}^{\infty}(-1)^{j} \frac{\cos \left(\kappa_{j}^{(3)} x_{0}\right)}{\kappa_{j}^{(3)} N_{j}^{(4)}} \cdot \frac{\cosh \left(\kappa_{j}^{(3)}(z+h)\right)}{\cosh \left(\kappa_{j}^{(3)}(h-d)\right)}, \\
\mathcal{K}_{3,2}\left(x, z_{0}\right)=\mathcal{G}_{I I I}^{(1)}\left(x,-d ; z_{0}\right)= \\
=h-d-\frac{x^{2}}{h-d}-\sum_{j=1}^{\infty}(-1)^{j} \frac{\cos \left(\kappa_{j}^{(2)}\left(z_{0}+h\right)\right)}{\kappa_{j}^{(2)} N_{j}^{(3)}} \cdot \frac{\cosh \left(\kappa_{j}^{(2)} x\right)}{\cosh \left(\frac{1}{2} \kappa_{j}^{(2)}\right)},
\end{aligned} \tag{0.25e}
\end{gather*}
$$

$$
\begin{align*}
\mathcal{K}_{3,3}\left(x, x_{0}\right)=\mathcal{G}_{I I I}^{(2)}\left(x,-d ; x_{0}\right)-\mathcal{G}_{I V} & \left(x,-d ; x_{0}\right)= \\
= & 2\left(d-\frac{1}{\Lambda}\right)+\sum_{j=1}^{\infty} \frac{\cos \left(\kappa_{j}^{(3)} x_{0}\right) \cos \left(\kappa_{j}^{(3)} x\right)}{\kappa_{j}^{(3)} N_{j}^{(6)}}, \tag{0.25g}
\end{align*}
$$

where

$$
\frac{1}{N_{j}^{(6)}}=4\left(\operatorname{coth}\left(\kappa_{j}^{(3)}(h-d)\right)-\frac{\kappa_{j}^{(3)}-\Lambda \tanh \left(\kappa_{j}^{(3)} d\right)}{\Lambda-\kappa_{j}^{(3)} \tanh \left(\kappa_{j}^{(3)} d\right)}\right) .
$$

The inhomogeneous system of ten integral equations (0.24) couples six unknown functions $w_{k}^{(i)}, k=1,2,3, i=1,2$ and four coefficients $\mathcal{A}_{-1}^{(i)}, \mathcal{A}_{-2}^{(i)}, i=1,2$. It can be solved by the Galerkin projective scheme suggesting approximate solutions in the form

$$
\begin{equation*}
w_{1}^{(i)}(z)=\sum_{j=1}^{N_{1}} \alpha_{j}^{(1, i)} v_{j}^{(1)}(z) ; \quad w_{2}^{(i)}(z)=\sum_{j=1}^{N_{2}} \alpha_{j}^{(2, i)} v_{j}^{(1)}(z) ; \quad w_{3}^{(i)}(x)=\sum_{j=1}^{N_{3}} \alpha_{j}^{(3, i)} v_{j}^{(2)}(x), \tag{0.26}
\end{equation*}
$$

where $\left\{v_{j}^{(1)}\right\}$ and $\left\{v_{j}^{(2)}\right\}$ are two complete systems of functions on $(-h,-d)$ and $\left(-\frac{1}{2}, 0\right)$, respectively. Insertion of (0.26) into (0.24) and use of the projective scheme lead to a system of $2 N_{1}+2 N_{2}+2 N_{3}+4$ linear algebraic system with respect to $2 N_{1}+2 N_{3}+2 N_{3}+4$ variables $\left\{\alpha_{j}^{(1, i)}, j=1, \ldots, N_{1}\right\},\left\{\alpha_{j}^{(2, i)}, j=1, \ldots, N_{2}\right\},\left\{\alpha_{j}^{(3, i)}, j=1, \ldots, N_{3}\right\}$ and $\mathcal{A}_{-j}^{(i)}, i, j=1,2$.

By introducing the vector

$$
\begin{align*}
& \boldsymbol{B}=\left(\alpha_{1}^{(1,1)}, \ldots, \alpha_{N_{1}}^{(1,1)} ; \alpha_{1}^{(2,1)}, \ldots, \alpha_{N_{2}}^{(2,1)} ; \alpha_{1}^{(3,1)}, \ldots, \alpha_{N_{3}}^{(3,1)} ; \mathcal{A}_{-2}^{(1)}, \mathcal{A}_{-1}^{(1)} ;\right. \\
&\left.\alpha_{1}^{(1,2)}, \ldots, \alpha_{N_{1}}^{(1,2)} ; \alpha_{1}^{(2,2)}, \ldots, \alpha_{N_{2}}^{(2,2)} ; \alpha_{1}^{(3,2)}, \ldots, \alpha_{N_{3}}^{(3,2)} ; \mathcal{A}_{-2}^{(2)}, \mathcal{A}_{-1}^{(2)}\right)^{T} \tag{0.27}
\end{align*}
$$

the matrix problem following from the Galerkin scheme is as follows

$$
\begin{equation*}
(\mathcal{P} \boxed{-\xi \mathcal{D}}) \boldsymbol{B}=\epsilon(\boldsymbol{b} \boxed{-\xi \boldsymbol{d}}) \tag{0.28}
\end{equation*}
$$

where \mathcal{P} and \mathcal{D} are the $\left(2 N_{1}+2 N_{3}+2 N_{3}+4\right) \times\left(2 N_{1}+2 N_{3}+2 N_{3}+4\right)$-matrices,

$$
\begin{equation*}
\hat{u}_{0}=\xi=\sqrt{a_{1}^{2}+\left(a_{2}-\epsilon\right)^{2}} . \tag{0.29}
\end{equation*}
$$

Elements of \mathcal{P} and the right-hand side vector \boldsymbol{b} are integrals over the kernels (0.25) and the functions $\left\{v_{j}^{(1)}\right\}$ and $\left\{v_{j}^{(2)}\right\}$. The matrix \mathcal{P} has the following structure

$$
\mathcal{P}=\left\|\begin{array}{llll}
D & \text {-p } & \tag{0.30}\\
\hline & & & \\
\hline \mathrm{p} & & D
\end{array}\right\|,
$$

where the two sub-matrices D and p have dimensions $\left(N_{1}+N_{2}+N_{3}+2\right) \times\left(N_{1}+N_{2}+N_{3}+2\right)$ and $N_{1} \times N_{1}$, respectively.

Convergence and accuracy of the Galerkin method depend on the functional sets $\left\{v_{j}^{(1)}(z)\right\}$ and $\left\{v_{j}^{(2)}(x)\right\}$. Because the Neumann traces on $T_{k}, k=1,2,3$ are singular at the corner points of the piercing rectangular body, i.e. $w_{j}^{(i)}(z) \rightarrow \infty$ as $z \rightarrow-d$ and $w_{3}^{(i)}(x) \rightarrow \infty$ as $x \rightarrow-\frac{1}{2}$, the use of a smooth functional basis, for instance, trigonometrical or polynomial, causes weak convergence. On the contrary, accounting for the singular character of the traces should improve the convergence. The local solutions of the complex velocity at the edges \bar{A}_{2} and \bar{A}_{3} in the complex plane $Z=\bar{x}+\mathrm{i} \bar{z}$ can be expressed as

$$
\begin{gather*}
\left.\frac{d W_{0}}{d Z}\right|_{\mathrm{at} \bar{A}_{2}}=e^{-\mathrm{i} \frac{\pi}{2}} \eta_{3 a} \sigma \sin (\sigma t)+\sum_{i=1}^{\infty} T_{i}^{(2)}(t)[Z+\bar{B}+\mathrm{i} \bar{d}]^{\frac{2 i}{3}-1} \tag{0.31a}\\
\left.\frac{d W_{0}}{d Z}\right|_{\mathrm{at} \bar{A}_{3}}=e^{-\mathrm{i} \frac{\pi}{2}} \eta_{3 a} \sigma \sin (\sigma t)+\sum_{i=1}^{\infty} T_{i}^{(3)}(t)\left[e^{\mathrm{i} \pi}\left(Z+\frac{L_{1}}{2}+\mathrm{i} \bar{d}\right)\right]^{\frac{2 i}{3}-1}, \tag{0.31b}
\end{gather*}
$$

where W_{0} is the complex velocity potential. The first term in (0.31) is caused by the vertical motion of the body.

By conducting direct analytical derivations or noting that summands in (0.31) with i that are divisible by 3 are regular, one can see that terms associated with $T_{3 l}^{(2)}(t), T_{3 l}^{(3)}(t), l=$ $1,2, \ldots$ vanish on the intervals $\bar{T}_{k}, k=1,2,3$. This implies that $\psi(-b, z, t) \sim(z+$ $d)^{m}, \quad z \rightarrow-d ; \quad \psi(x,-d, t) \sim\left(x+\frac{1}{2}\right)^{m}, \quad x \rightarrow-\frac{1}{2}$, where the numbers m belong to the set

$$
\begin{equation*}
\left\{ \pm \frac{1}{3}+2(i-1), i \geqslant 1\right\} . \tag{0.32}
\end{equation*}
$$

The enumeration of (0.32) in ascending order determines a sequence $m_{j}, j \geqslant 1$. The functional basis must satisfy

$$
\begin{equation*}
v_{j}^{(1)} \sim(z+d)^{m_{j}}, \quad z \rightarrow-d ; \quad v_{j}^{(2)} \sim\left(x+\frac{1}{2}\right)^{m_{j}}, \quad x \rightarrow-\frac{1}{2} \quad j \geqslant 1 . \tag{0.33}
\end{equation*}
$$

Further, accounting for the zero Neumann conditions on S_{B} and S_{S}, i.e.

$$
\begin{equation*}
\left(v_{j}^{(1)}\right)^{\prime}(-h)=0 \quad \text { and } \quad\left(v_{j}^{(2)}\right)^{\prime}(0)=0, \quad j \geqslant 1 \tag{0.34}
\end{equation*}
$$

deduces from (0.33) the following functional sets

$$
\begin{equation*}
v_{j}^{(1)}(z)=\frac{1}{r_{j}^{(1)}}\left(1-\left(\frac{z+h}{h-d}\right)^{2}\right)^{m_{j}} ; \quad v_{j}^{(2)}(x)=\frac{1}{r_{j}^{(2)}}\left(1-(2 x)^{2}\right)^{m_{j}}, \quad j \geqslant 1, \tag{0.35}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{j}^{(1)}=\sqrt{\frac{(h-d) \sqrt{\pi} \Gamma\left(2 m_{j}+1\right)}{2 \Gamma\left(2 m_{j}+\frac{3}{2}\right)}}, \quad r_{j}^{(2)}=\frac{1}{2} \sqrt{\frac{\sqrt{\pi} \Gamma\left(2 m_{j}+1\right)}{\Gamma\left(2 m_{j}+\frac{3}{2}\right)}}, \quad j \geqslant 1 \tag{0.36}
\end{equation*}
$$

$\left(\Gamma(\cdot)\right.$ is the gamma-function). The scaling factors $r_{j}^{(i)}, i=1,2 ; j=1,2,3$ appear from the normalization condition $\int_{-h}^{-d}\left(v_{j}^{(1)}(z)\right)^{2} d z=\int_{-\frac{1}{2}}^{0}\left(v_{j}^{(2)}(x)\right)^{2} d x=1, j \geqslant 1$. The nonsingular sub-sets $\left\{v_{j}^{(1)}\right\}$ and $\left\{v_{j}^{(2)}\right\}$ with $j \geqslant 2$ constitute complete bases for the functions on the intervals $[-h,-d]$ and $\left[-\frac{1}{2}, 0\right]$, respectively, for functions which satisfy (0.34). The completeness follows from the classical theorem by Müntz theorem.

Elements of \mathcal{P} and the right-hand side vector \boldsymbol{b} are found explicitly via the special functions, but the extra right-hand side vector \boldsymbol{d} and matrix \mathcal{D} have the elements
$\boldsymbol{d}=\left\{0\right.$, except $\left.b_{k+N_{1}+N_{2}}=\beta d_{k}, k=1, \ldots, N_{3}\right\}$,
$\mathcal{D}=\left\{0\right.$, except $\left.\mathcal{D}_{k+N_{1}+N_{2}, 2\left(N_{1}+N_{2}\right)+N_{3}+j+2}=-\mathcal{D}_{k+2\left(N_{1}+N_{2}\right)+N_{3}+2, N_{1}+N_{2}+j}=2 \beta d_{k} d_{j}\right\}$,
where

$$
d_{k}=\frac{\sqrt{\pi} \Gamma\left(m_{k}+1\right)}{4 r_{k}^{(2)} \Gamma\left(m_{k}+\frac{3}{2}\right)} .
$$

As explained by Faltinsen et al. (2007), the nondimensional resonance condition follows from the equation

$$
\begin{equation*}
\operatorname{det}\left\|D\left(\Lambda_{*}\right)\right\|=0, \quad \Lambda_{*} \in\left(0, \frac{\pi}{2} \tanh \left(\frac{\pi}{2}\right)\right) \tag{0.37}
\end{equation*}
$$

where D is the sub-matrix of dimension $N_{1}+N_{2}+N_{3}+2$ found in (0.30).
The nonlinear equations (0.28) can be solved iteratively starting with $\xi=0$.

