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1. Verification of DNS Results: Conservation of Energy

The following energy balance equations are reproduced from the main manuscript here
by means of verifying the accuracy of the DNS results. Both sides of the following equa-
tions have been calculated independently and therefore evaluating the match between
RHS and LHS of these equations provides a decent measure to the accuracy of the re-
sults. The plots comparing RHS and LHS are presented in figures 1 through 4 only for
Pr = 1, 8, 16 for conciseness. In fact other simulations resemble these and therefore their
corresponding plots are not provided. A shortcoming of this measure entails discrete
intervals of the output data during the forward time-stepping code (taken to be about
∆tsave = 2 due to large hard-disk demand), which is imposed by the presence of a time
derivative in the left-hand side of all these energy budget equations. As such, huge spikes
for example in the plots associated with the three-dimensional kinetic energy balance,
σ3d, are very hard to capture temporally, since it needs finer intervals of data output
and also explains why the misfit in σ3d is most noticeable. Nevertheless, there is minimal
misfit in the relatively smoother regions of σ3d as well as a good agreement (better than
approximately 1 part per million) in σ and d

dtP plots.

d

dt
K = −H+D (1.1)

d

dt
K3d = −H3d +D3d + Sh+A (1.2)

d

dt
P = H+Dp (1.3)

2. Verification of DNS Results: Resolution

A measure for verifying the accuracy of the DNS results is to compare our grid spacing
with the dissipation scales of turbulence, as discussed in the main manuscript. Figure
5a, illustrates the ratio of the biggest resolved spatial scales inside the domain to the
Batchelor length scale LB. Note that, during the flow evolution, LB has been calculated
based on the viscous dissipated energy within z = ±1 for consistency, although after the
KH roll-up and specially during the energetic turbulent phase, energy dissipation extends
within z = ±2.5 (in the cases studied in the main manuscript). Thus our overestimation
of LB suits our goal of designing the mesh spacing conservatively. As the figure shows, the
peak of such ratio barely extends beyond 5 and is mostly between 3 and 4.5 during the
energetic fully turbulent regime (the flow categorization is introduced in the main paper);
thus our numerical experiments had been resolved sufficiently based on the recommended
range in literature (between 3 and 6).
We have also illustrated similar variations of the grid size but with respect to the

Kolmogrov length scale LK in figure 5b. As shown in this figure we realized that ∆x/LK

should not exceed 3.5-4 in the most turbulent times of the flow evolution and therefore
the corresponding resolutions for Pr = 1 was chosen identical to that of Pr = 2.

3. MATLAB Snippet for PDF Sorting

Here we present a MATLAB script for demonstrating the implementation of the PDF
sorting algorithm for a simple 1D profile (see Listing 1). This algorithm can be suitably
parallelized for actual 3D DNS applications. For further details the reader is referred to
the main manuscript.
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Figure 1: Comparing independent numerical evaluations of the left-hand side (circles) and
right-hand side (blue curve) of (a) total kinetic energy balance equation as reproduced
in (1.1), (b) kinetic energy of three-dimensional perturbations (1.2) and (c) potential
energy balance (1.3); at Pr = 1, Re = 6000, Ri0 = 0.12.
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Figure 2: Similar to figure 1 but for Pr = 2.
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Figure 3: Similar to figure 1 but for Pr = 8.
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Figure 4: Similar to figure 1 but for Pr = 16.
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Figure 5: The time variations of (a) ∆x/LB and (b) ∆x/LK where ∆x represents an
approximation for the fixed grid spacing and LK and LB denote the Kolmogrov and
Batchelor length scales respectively; highlighting the sufficiency of the resolution em-
ployed in all the DNS studies reported in the main manuscript.
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Listing 1: A MATLAB snippet demonstrating the implementation of parallel PDF sorting
algorithm as explained in the main manuscript

%================================================================
% Purpose : A 1D prototype f o r p a r a l l e l s o r t i n g a lgor i thm used f o r
% ad i aba t i c r e s t r a t i f i c a t i o n o f the evo lv ing dens i ty
% f i e l d based on p r obab i l i t y dens i ty func t i on (PDF) and
% Chebyshev t rans fo rmat ion .
% More d e t a i l s can be found in [ 1 , 2 ] .
%
%
% Written by : Hesam Sa leh ipour
% h . sa leh ipour@utoronto . ca
% September 8th , 2013
%
%−−−−−−−
% NOTE: I f you found t h i s shor t s c r i p t u s e f u l ∗ p l e a s e c i t e ∗ :
%−−−−−−−
% [ 1 ] Tseng , Y. & Ferz ige r , J . H. 2001 ”Mixing and av a i l a b l e
% po t en t i a l energy in s t r a t i f i e d f l ows ” , Phys ics o f F lu ids
% 13 , 1281 .
% [ 2 ] Sa leh ipour , H. , P e l t i e r , W. R. & Mashayek , A. 2015 ”Turbulent
% diapycna l mixing in s t r a t i f i e d shear f l ows : the i n f l u e n c e o f
% Prandtl number on mixing e f f i c i e n c y and t r a n s i t i o n at high
% Reynolds number” , J . Flu id Mech .
%=================================================================

c l e a r a l l ; c l c ; c l o s e a l l ;
nz= 5e3 ;
z=l i n s p a c e (−15 ,15 , nz ) ;
rho=1−tanh ( z ) ;
%rho = 2∗ s i n ( z ) ; % choose your p r o f i l e !

% Sort us ing pdf approach
np = 250 ;
nbins = 3∗np−1; %nbins = 3∗(np+1)−2;

rmax=max( rho ) ;
rmin=min ( rho ) ;
dr=rmax−rmin ;

% Step 1 : Bui ld the r e f e r e n c e monotonica l ly dec r ea s ing p r o f i l e us ing
% Chebychev t rans fo rmat ion .
theta=ze ro s (1 , np+1);
rhob =ze ro s (1 , np+1);
f o r i =1:np+1
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theta ( i )=pi ∗( i −1)/np ;
rhob ( i )=rmin+dr/2∗(1+ cos ( theta ( i ) ) ) ;

end
theta = theta /2 ;
rhobmax = rhob (2 ) + ( rhob(1)− rhob (2 ) )∗ cos ( theta ) ;
rhobmin = rhob (np)−( rhob (np)−rhob (np+1))∗ cos ( theta (np+1:−1:1)) ;
%rhobmid = 0 . 5∗ ( rhob ( 1 : np)+rhob ( 2 : np+1)) ;
rhobmid = rhob ( 1 : np ) ;

% Step 2 : Ca l cu la t e the PDF f o r the g r id po in t s o f each node .
rho base=ze ro s (1 , nbins ) ;
rpdf = ze ro s (1 , nbins ) ;
dz i = z (2)− z ( 1 ) ;
rho base (np+1:2∗np−2) = rhobmid ( 2 : np−1);

f o r i =1:np
rho base ( i ) = ( rhobmax ( i )+rhobmax ( i +1))/2;
rho base ( i+2∗np−2) = ( rhobmin ( i )+rhobmin ( i +1))/2;
f o r j =1:nz

i f ( rho ( j )>rhobmax ( i +1) && rho ( j )<=rhobmax ( i ) )
rpdf ( i ) = rpdf ( i ) + dz i ;

e l s e i f ( rho ( j )>rhobmin ( i +1) && rho ( j )<=rhobmin ( i ) )
rpdf ( i+2∗np−2) = rpdf ( i+2∗np−2) + dz i ;

end
end

end
f o r i =2:np−1

f o r j =1:nz
i f ( rho ( j )>rhob ( i +1) && rho ( j )<=rhob ( i ) )

rpdf ( i+np−1) = rpdf ( i+np−1) + dz i ;
end

end
end

% NOTE: In p a r a l l e l : do a g l oba l sum of ” rpdf ”

% Step 3 : Bui ld the r e f e r e n c e he ight a s s o c i a t ed with the so r t ed p r o f i l e .
zb=ze ro s (1 , nbins ) ;
f o r i =2: nbins

zb ( i )=zb ( i−1)+rpdf ( i −1);
end

p lo t ( rho base , zb , ’ bo− ’)
hold on ;
p l o t ( rho , z+15 , ’ r ’ )


