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Appendix A. Supplementary Material
A.1. Calculation of f©

‘We seek the solution to

0 af© 1
— (yPe(1 — 20)f(© — =L _ ©O_ )= Al
with normalisation condition
27
| rO6sas =1, (A2)
0

As we require periodicity £ (0;y) = f(©((2746);y), we can seck a solution as a Fourier
Series:

1 () = .
f= o <2+¥akcosk0+bksmk9> ,

where the a; and by, for k& > 0 wil be functions of i, and a¢ = 2 to ensure the normalisation
condition is satisfied.
On inserting this expression into equation (A 1), we obtain

yPe Z —kay, sin k@ + kb, cos kO
1

—|—yPe§ <a1 sin @ 4 by cos 6 + Z k(akt2 + ag—2)sinkf — Z E(brt2 + bg—2) cos k;9>
1 1

+> (K + 0) (ax cos kO + by sin k) = 0, (A3)
1

where ar = 0 for k£ < 0 and b, = 0 for k£ < 1. By the orthogonality of the Fourier modes,
on truncating the expansion to a finite sum, we can obtain solutions for the coefficients
for specified values of the parameters yPe, 8 and o. In particular we notice that the odd
and even in k£ modes are uncoupled, and thus find that all odd modes are equal to zero.

A.2. Pe < 1 asymptotics

For Pe < 1 we can obtain an approximate analytic expression for f(9). Specifically we
expand in powers of Pe to obtain a solution correct to O(Pe?):

O = 2i (f<°°> + PefOb 4 pe? f<02)) . (A4)
™

with integral constraint fOQW FO9q0 = 27, fo% fONap = o, fOQTr 2 3dp = 0. Substituting
into equation (A 1) we obtain at O(1):

,ﬁf(00)+g(f(00),i):0 (A5)
06?2 27 ’
which has solution f(°0) = 1. At O(Pe) equation (A1) gives
Tod 0 g = D1 peosa0)) = 2ypsing (A0
502 o =25 W cos = 2yfsin b,
which has solution
01 (g, .\ — _ By .
[0 y) 20 +0/4) sin 260 (A7)
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At O(Pe?) equation (A1) gives

By
14+0/4

0? 0
Wf(w) —of0% = — (y(l — B cos 29)f(01)) = (B cos4f — cos20) (A8)

-0

which has solution

2p,2
©02) (.. — By~ Pe cos 260 B 3 cos 46 A
209 = 105070 (1+0/4 ito/d) (49)
The mean squared vertical swimming speed can then be computed to O(Pe?):
27
Vis(y) = / sin? 00 do = 2i / sin @ ( FO0 4 pe O 4 pe? f<02>) do
0 s
1 By? Pe?
=—(l-—"— ). Al
2 ( 8(1+ o/4)2 (A10)
A.3. Presence of Figenfunctions
Consider the governing equation for ¢ when Pe =0 and d = 0:
2 2m
esineg—zj - (2715 + (0 —exsinf)y — %/0 (o —exsin®)Y(y,0)do’ =0. (A11)

On applying the conditions fOQﬂ »(y,0)do = n(y), 027T

equation simplifies to

¥(y,0)sin6dh = 0, the governing

. Oy 0%
esin 0 ——

8y_w

As we require a solution periodic in 6, we seek a Fourier Series expansion:

o (ao(y)

or 2

+ (0 —exsiné)y — %Jn(y) =0. (A12)

P =

+ Z ak(y) cos k6 + by (y) sin kz9> .
1

The condition fo% Y(y,0)sinbdh = 0 gives by = 0. The symmetry condition ¢ (y, 8; Pe) =
Y(y, ™ — 0; —Pe) gives ag41 = by = 0 for k even. The symmetry condition ¢ (y, 0;x) =
P(—y,—0; —x) gives ar(y) is an even function of y and b (y) is an odd function of y. We
thus rewrite the solution as

ew (Po(y)

=5 |5+ 21: Py (y) cos 2k0 + Qi (y) sin(2k + 1)9> ;

where Py (y) is an even function of y and Qg (y) is an odd function of y. By orthogonality
of the eigenmodes, we obtain the following relations between the Fourier coefficients:

2((2k +1)* + o)

Plé — P;é+1 + c Qr =0, (A 13)
2002k + o
Qi — Qg1 + MP;C =0. (A14)
Setting k = 0 in equation (A 16) gives
1
Ri=1- [ Py + R, (A15)
1

If P, contains eigenfunction solutions, Py and hence the cell concentration will not be
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uniquely determined. If we truncate the system at N = 1 we have

2
P+ 20t9) Q1 =0, (A 16)
€
2(4
Q'ﬁi( ) p o, (A17)
which has solution
( P ) = Cle+e%’\y + Che_e M (A18)
Q1
where
I T
o+
=1+ = 4 . Al
- ( Hg) A=V (A19

The symmetry condition that Py (y) is an even function of y and Q(y) is an odd function
of y requires C7 = Cs.
In general, there are many eigenmode solutions of the form

2 2
P, = ay, cosh ()\y) ,  Qp = B sinh ()\y) , (A 20)
€ €

where X is an eigenvalue, oy, and §; are components of the corresponding eigenvector, and
both eigenvalues and eigenvectors only depend on ¢ and the truncation value. However, if
we enforce the condition that sin 81 = 0 on the boundaries, then ¢ = 0 on the boundaries
and this ensures that all coefficients in the eigenfunctions are zero.

A.4. Effect of shape on equilibrium distributionwith cross channel chemotactic gradient.

The data corresponding to figure 2 for chemotactic cells is plotted in figure A.1. Similar
effects are seen with changes in 8 and Pe as for the non-chemotactic case, although the
distribution is somewhat dominated by the exponential distribution. We see that non-
monotonic centreline depletion with increasing Pe still occurs at smaller values of 3, for
example § = 0.2,0.4, as shown in figure A.1f.
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FicUReE A.1. The influence of cell shape, [, on equilibrium cell concentration with
x = 0.99,0 = 2. (a,b) correspond to Pe = 5 and (c,d) to Pe = 25. (a,c) Leading order in
€ asymptotic approximation, other plots correspond to numerical solution of ¥ equation. In (e,f)
ns(0) is the cell concentration at y = 0 normalised by the 8 = 0 solution at the corresponding
Pe. In (a~d,f) greyscale indicate 8 = [0,0.2,0.4,0.6,0.8] with black corresponding to 0; in (e)
greyscale indicate Pe = [0,1.25,5, 10, 25] with black corresponding to 0.



