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Appendix A. Supplementary Material

A.1. Calculation of f (0)

We seek the solution to

∂

∂θ

(
yPe(1 − β cos 2θ)f (0) − ∂f (0)

∂θ

)
+ σ(f (0) − 1

2π
) = 0, (A 1)

with normalisation condition ∫ 2π

0

f (0)(θ; y)dθ = 1. (A 2)

As we require periodicity f (0)(θ; y) = f (0)((2π+θ); y), we can seek a solution as a Fourier
Series:

f =
1

2π

(
a0
2

+

∞∑
1

ak cos kθ + bk sin kθ

)
,

where the ak and bk for k > 0 wil be functions of y, and a0 = 2 to ensure the normalisation
condition is satisfied.

On inserting this expression into equation (A 1), we obtain

yPe

∞∑
1

−kak sin kθ + kbk cos kθ

+yPe
β

2

(
a1 sin θ + b1 cos θ +

∞∑
1

k(ak+2 + ak−2) sin kθ −
∞∑
1

k(bk+2 + bk−2) cos kθ

)

+

∞∑
1

(k2 + σ) (ak cos kθ + bk sin kθ) = 0, (A 3)

where ak = 0 for k < 0 and bk = 0 for k < 1. By the orthogonality of the Fourier modes,
on truncating the expansion to a finite sum, we can obtain solutions for the coefficients
for specified values of the parameters yPe, β and σ. In particular we notice that the odd
and even in k modes are uncoupled, and thus find that all odd modes are equal to zero.

A.2. Pe ≪ 1 asymptotics

For Pe � 1 we can obtain an approximate analytic expression for f (0). Specifically we
expand in powers of Pe to obtain a solution correct to O(Pe2):

f (0) =
1

2π

(
f (00) + Pef (01) + Pe2f (02)

)
. (A 4)

with integral constraint
∫ 2π

0
f (00)dθ = 2π,

∫ 2π

0
f (01)dθ = 0,

∫ 2π

0
f (02)dθ = 0. Substituting

into equation (A 1) we obtain at O(1):

− ∂2

∂θ2
f (00) + σ(f (00) − 1

2π
) = 0, (A 5)

which has solution f (00) = 1. At O(Pe) equation (A 1) gives

∂2

∂θ2
f (01) − σf (01) =

∂

∂θ
(y(1 − β cos 2θ)) = 2yβ sin θ, (A 6)

which has solution

f (01)(θ; y) = − βy

2(1 + σ/4)
sin 2θ (A 7)
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At O(Pe2) equation (A 1) gives

∂2

∂θ2
f (02) − σf (02) =

∂

∂θ

(
y(1 − β cos 2θ)f (01)

)
=

βy2

1 + σ/4
(β cos 4θ − cos 2θ) (A 8)

which has solution

f (02)(θ; y) =
βy2Pe2

4(1 + σ/4)

(
cos 2θ

1 + σ/4
− β cos 4θ

4 + σ/4

)
. (A 9)

The mean squared vertical swimming speed can then be computed to O(Pe2):

VMS(y) =

∫ 2π

0

sin2 θf (0)dθ =
1

2π

∫
sin2 θ

(
f (00) + Pef (01) + Pe2f (02)

)
dθ

=
1

2

(
1 − βy2Pe2

8(1 + σ/4)2

)
. (A 10)

A.3. Presence of Eigenfunctions

Consider the governing equation for ψ when Pe = 0 and d = 0:

ε sin θ
∂ψ

∂y
− ∂2ψ

∂θ2
+ (σ − εχ sin θ)ψ − 1

2π

∫ 2π

0

(σ − εχ sin θ′)ψ(y, θ′)dθ′ = 0. (A 11)

On applying the conditions
∫ 2π

0
ψ(y, θ)dθ = n(y),

∫ 2π

0
ψ(y, θ) sin θdθ = 0, the governing

equation simplifies to

ε sin θ
∂ψ

∂y
− ∂2ψ

∂θ2
+ (σ − εχ sin θ)ψ − 1

2π
σn(y) = 0. (A 12)

As we require a solution periodic in θ, we seek a Fourier Series expansion:

ψ =
eχy

2π

(
a0(y)

2
+

∞∑
1

ak(y) cos kθ + bk(y) sin kθ

)
.

The condition
∫ 2π

0
ψ(y, θ) sin θdθ = 0 gives b1 = 0. The symmetry condition ψ(y, θ; Pe) =

ψ(y, π − θ;−Pe) gives ak+1 = bk = 0 for k even. The symmetry condition ψ(y, θ;χ) =
ψ(−y,−θ;−χ) gives ak(y) is an even function of y and bk(y) is an odd function of y. We
thus rewrite the solution as

ψ =
eχy

2π

(
P0(y)

2
+

∞∑
1

Pk(y) cos 2kθ +Qk(y) sin(2k + 1)θ

)
,

where Pk(y) is an even function of y and Qk(y) is an odd function of y. By orthogonality
of the eigenmodes, we obtain the following relations between the Fourier coefficients:

P ′k − P ′k+1 +
2((2k + 1)2 + σ)

ε
Qk = 0, (A 13)

Q′k −Q′k+1 +
2((2k)2 + σ)

ε
Pk = 0. (A 14)

Setting k = 0 in equation (A 16) gives

P0 = 1 −
∫ 1

−1
P1(y)dy + P1(y). (A 15)

If P1 contains eigenfunction solutions, P0 and hence the cell concentration will not be
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uniquely determined. If we truncate the system at N = 1 we have

P ′1 +
2(9 + σ)

ε
Q1 = 0, (A 16)

Q′1 +
2(4 + σ)

ε
P1 = 0, (A 17)

which has solution (
P1

Q1

)
= C1e+e

2
ελy + C2e−e

− 2
ελy (A 18)

where

e± =

(
1,±

√
σ + 4

σ + 9

)T
, λ =

√
(σ + 4)(σ + 9). (A 19)

The symmetry condition that Pk(y) is an even function of y and Qk(y) is an odd function
of y requires C1 = C2.

In general, there are many eigenmode solutions of the form

Pk = αk cosh

(
2

ε
λy

)
, Qk = βk sinh

(
2

ε
λy

)
, (A 20)

where λ is an eigenvalue, αk and βk are components of the corresponding eigenvector, and
both eigenvalues and eigenvectors only depend on σ and the truncation value. However, if
we enforce the condition that sin θψ = 0 on the boundaries, then ψ = 0 on the boundaries
and this ensures that all coefficients in the eigenfunctions are zero.

A.4. Effect of shape on equilibrium distributionwith cross channel chemotactic gradient.

The data corresponding to figure 2 for chemotactic cells is plotted in figure A.1. Similar
effects are seen with changes in β and Pe as for the non-chemotactic case, although the
distribution is somewhat dominated by the exponential distribution. We see that non-
monotonic centreline depletion with increasing Pe still occurs at smaller values of β, for
example β = 0.2, 0.4, as shown in figure A.1f.
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Figure A.1. The influence of cell shape, β, on equilibrium cell concentration with
χ = 0.99, σ = 2. (a,b) correspond to Pe = 5 and (c,d) to Pe = 25. (a,c) Leading order in
ε asymptotic approximation, other plots correspond to numerical solution of ψ equation. In (e,f)
ns(0) is the cell concentration at y = 0 normalised by the β = 0 solution at the corresponding
Pe. In (a-d,f) greyscale indicate β = [0, 0.2, 0.4, 0.6, 0.8] with black corresponding to 0; in (e)
greyscale indicate Pe = [0, 1.25, 5, 10, 25] with black corresponding to 0.


