Liquid jet eruption from hollow relaxation: Supplementary Material

ÉLISABETH GHABACHE, THOMAS SÉON and ARNAUD ANTKOWIAK

Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190 Institut Jean Le Rond d'Alembert, F-75005 Paris, France.

(Received October 30, 2014)

Here is addressed the influence of viscosity on the ballistic trajectory. Experimental analysis of the maximum jet height $Z_{\rm exp}$ reveals that under a viscosity threshold of about $\mu=100$ mPa.s the assumption of ballistic jet is excellent. Good agreement is still obtained with higher viscosities, though deviations as high as 20% can be observed with liquids a thousand times more viscous than water.

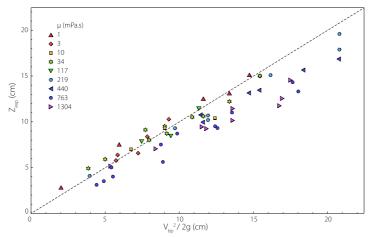


Fig. 1 - Experimental maximal jet height $Z_{\rm exp}$ compared to the ballistic value $Z_{\rm th} = {
m V}_{
m tip}^2/2g$.

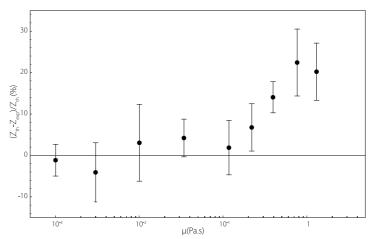


Fig. 2 - Relative error between the observed and the ballistic jet height as a function of viscosity μ .