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1. Projected equations

In this section, we will show that the system of equations (2.5) which govern the
dynamics of the perturbations can be written in the classical state-space form presented
in Eq. (5.2).
Equation (2.5) can first be recast in the form(
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where u′ denotes the velocity field and p′ stands for the corresponding pressure field.
We now reformulate the above equations into standard state-space form. To this end we
multiply the momentum equation by A2M

−1, which yields — assuming that A2u̇
′ = 0 —

an expression for the pressure in terms of the velocity field
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This relation can be used to eliminate the explicit divergence constraint and allows us
to write the governing linearized equations in the desired form
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where
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is the projection matrix onto the divergence-free space. Note that if u′ is already diver-
gence free, we have ZMu′ = u′.
Defining Ã = ZA1 and M̃ = ZM, Eq. (1.3) is the same as Eq. (5.2) of the article.

2. Effect of discretization order on eigen-spectrum and
ϵ-pseudo-spectrum

We briefly analyze here the influence of the discretization order. We have represented
for this in figure 1(a) the eigenspectrum obtained in the case of disc. D3, which dis-
plays the same mesh as in D1 but a higher spatial discretization order. We can see that
the spectrum is qualitatively similar to the one shown in figure 7(a) of the article, with
the damping rates of the high frequency non-overlapping eigenvalues remaining approx-
imately near −σ ≈ 15. Figure 1(b) shows a comparison of the ”background” value of
ϵ obtained for discs. D1, D2, D3 and D4 along ω = 20 and ω = 80. We can see that
the values obtained for the first-order spatial discretization (D1) are very close to those
obtained for the second-order discretization (D3) for both frequencies. This shows that
ϵ is a robust quantity with respect to numerical choices: a region of quasi-eigenvalues
remains as such when changing the order of the spatial discretization.

3. Eigenvalues in region where ϵ < 10−12

To further illustrate the meaning of a region displaying ϵ < 10−12, we check that the
eigenvalues computed by our numerical method in such a region are ”true” eigenvalues,
in the sense that a linearized DNS code initialized by the real part of an eigenmode
yields a solution whose time-behavior is consistent with its eigenvalue µ. Note first that
we verified a posteriori that all eigenvalues reported in figures 7(a,b,c) of the article and
in figure 1(a) satisfied ∥Aq̂−µBq̂∥2/∥µBq̂∥2 6 5 ·10−11, where ∥·∥2 refers to the classical
vector 2-norm. This shows that all computed eigenvalues are eigenvalues nearly up to
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Figure 1. (a) - Eigenvalue spectrum in the (ω, σ)-plane obtained for disc. D3. Colors indicate
eigenvalues computed with distinct shift parameters s (see figure 7(b) of the article). (b) -
Comparison of ϵ between discs. D1, D2, D3 and D4 along ω = 20 and ω = 80. Re = 1600. In
plot (a), the inset corresponds to the same inset as the one in figure 7(a) of the article.

machine precision. Second, we have ascertained that time-marching the linearized Navier-
Stokes equations by solving Eq. (4.2) of article at each time-step (with fm = 0) also
agrees with the eigen-computations. We checked this by considering several eigenvalues
obtained in the overlapping region. For example, figure 2 is concerned with the eigenvalue
µ = −15.0 + 61.4i, for Re = 1600 and disc. D1. We can see that the temporal uz-signal
given at point (rc = 0.9, zc = 8) by the linearized DNS (initialized by the real part of the
eigenmode) fully agrees with the signal deduced from the eigenvalue and the structure
of the eigenmode. Such results are in agreement with those of Chedevergne et al. (2012);
Boyer et al. (2013) who performed a similar check.

4. Spatial convergence and sensitivity to location of left and right
boundaries

We have represented in figure 3(a) a comparison of the leading optimal gain λ1, given
respectively by discs. D1, D2, D3 and D4 as a function of ω. In figure 3(b), we have
compared the axial density functions of the leading optimal forcing and response at
ω = 62.5 for all discretizations. From these results, we may conclude that, if the head-end
is included in the computational domain, then the location of the outlet boundary and of
the precise outlet boundary condition has no influence on the optimal gain (figure (a)),
on the optimal forcing (figure (b)) and on the optimal response within the optimization
region z 6 8 (figure (b)). On the other hand, if the computational domain starts at
zb = 4, both the optimal forcing and response may be heavily changed, especially for
frequencies satisfying ω < 80, for which the optimal forcing is located within z < 4.
This has been exemplified in figure (b) for ω = 62.5 where the leading optimal forcing
and response for disc. D4 have been compared to the structures obtained for zb = 0
(disc. D1): it is seen that the removal of region z < 4 strongly impacts the amplification
potential at this frequency.
Comparing first-(D1) and second-order (D3) discretizations, we can conclude that the
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Figure 2. Comparison between linearized DNS signal uz(rc, zc, t) and analytic prediction
eσt(ûr

z(rc, zc) cosωt − ûi
z(rc, zc) sinωt) for eigenvalue µ = −15.0 + 61.4i and spatial location

near the injecting wall (rc = 0.9, zc = 8). Re = 1600 and disc. D1.
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Figure 3. (a) - Leading optimal gain for discs. D1, D2, D3 and D4. (b) - Axial energy density
function of leading optimal forcing and response at ω = 62.5. Re = 1600.

optimal forcings are converged (figure 3(b)), but that the optimal gains and responses
are slightly underestimated with a first-order discretization (figures (a,b)), especially for
high-frequencies where the optimal responses display small-scale structures.
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