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Supplementary Material

Video captions

This appendix contains captions for the online movies which accompany this article. All
movies correspond to certain figures contained in the previous sections and are included
to elucidate the behaviours under discussion. The files are found online as supplementary
material and also hosted at http://www.maths.bris.ac.uk/

~

maxdl/kolmo/movies/.

0.1. Movie 1

This movie shows the vorticity field, !, for a DNS of the chaotic kink-antikink pair at
Re = 70 as discussed in section 4. Total integration is T = 500 with timestep dt = 0.005
and individual frames are separated by 5 time units. The dynamics are mostly limited to
the central ‘eyes’ of the kink and antikink which oscillate aperiodically. This is in stark
contrast to the non-localised chaos observed for ↵ = 1.

0.2. Movie 2

This movie shows the vorticity field, !, for the solution P1 at Re = 20 and corresponds
directly with figure 16. Total integration is T = 20.7 with timestep dt = 0.05 and
individual frames are separated by 0.2 time units. This movie clearly shows the standing
wave-like motion of the central vorticity distribution, while the outer kink (right) and
antikink (left) remain steady.

0.3. Movie 3

This movie shows the vorticity field, !, for the chaotic repeller version of P1 at Re = 24.1
as discussed in section 4.5 and corresponding directly with figures 21 and 22. Total
integration is T = 105 with timestep dt = 0.05 and individual frames are separated by
200 time units. This movie indicates the chaotic motions of the central region, eventually
the motions result in a catastrophic collision with the antikink.

0.4. Movie 4

This movie shows the vorticity field, !, for the solution P2 at Re = 20 and corresponds
directly with figure 22. Total integration is T = 21.4 with timestep dt = 0.05 and
individual frames are separated by 0.2 time units. Here we see the largely the same
behaviour as for P1, only now with two periodic regions.

0.5. Movie 5

This movie shows the vorticity field, !, for the chaotic saddle at Re = 20.75 corresponding
with figure 23. Total integration is T = 105 with timestep dt = 0.05 and individual frames
are separated by 1000 time units. Striking in this movie is the uniform translation of the
flow while two vortical patches oscillate chaotically between two kinks. Eventually these
collide and in doing so one is annihilated leaving the solution P1.

0.6. Movie 6

This movie shows the vorticity field, !, for ↵ = 1
8 at Re = 22 as discussed in section 5 and

corresponding directly with figure 24. Total integration is T = 105 with timestep dt =
0.05 and individual frames are separated by 500 time units. Given a randomised initial
condition this movie demonstrates the emergence of stable propagating kink-antikink
bound states. The flow rapidly localises from the initial conditions to an assortment of
kinks and antikinks and an isolated, translating P1-like structure in the left had portion
of the domain.
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0.7. Movie 7

This movie shows the vorticity field, !, for ↵ = 1
8 at Re = 19 as discussed in section

5 and corresponding directly with figure 26. Total integration is T = 105 with timestep
dt = 0.05 and individual frames are separated by 500 time units. Given an initial condi-
tion comprised of kink-antikink travelling waves, this movie demonstrates several of the
collisional behaviours we encounter. Beginning with an elastic swapping collision, then
two rebounding collisions and finally a merging collision which results in 2 kinks and 1
antikink forming a localised chaotic oscillatory structure.

Utilising GPUs

It was found to be a remarkably straightforward process to port the algorithm into
CUDA. In the pseudospectral method, the only nonlocal computation is performed via
the Fourier Transform and a GPU accelerated FFT library is freely available with CUDA
called CUFFT. As the rest of the operations (timestepping, convolutions etc.) are point-
wise arithmetic the GPU implementation simply amounts to unwrapping nested loops
into the multithreaded architecture of the GPU.

To assess the added benefit of using GPUs compared to the Fortran CPU code of
Chandler & Kerswell (2013), both codes were run at Re = 40 for 20, 000 timesteps (T =
100, �t = 0.005) using the same randomised initial data, with ↵ = 1 (N

x

= N
y

= N).
This is long enough to marginalise the overhead in copying to and from the GPU (less
than 0.1% CPU time here). For the problem sizes in this study (equivalent to N = 256
since typically ↵ = 1

4 and N
x

= 128, N
y

= 512), there is a moderate ⇥4 speed up: see
figure 1 while brief tests with larger problem sizes ([4096]2) suggest a speed up of ⇥30 is
achievable. For our application it was found crucial to employ double precision arithmetic
to allow su�cient accuracy to converge solutions with Newton-GMRES, however if such
accuracy is not critical then an additional ⇥2 speed up can be achieved using single
precision (making the [4096]2 case 70 times quicker than the CPU equivalent).

In general, the code spends around 80% of GPU time in the CUFFT components of the
algorithm limiting the possibility for further optimisation. The code uses a single GPU
card for the calculations; communication across multiple GPUs is likely to be a critical
overhead for such a small problem size (see Lou & Yin (2012)). In this study, the state
vector is copied across to the GPU and timestepped until a return to the CPU is required
(either for Newton-GMRES or recurrence checking) thus minimising communication to
and from the GPU. The majority of computations presented here are carried out on
the EMERALD GPU cluster at Rutherford Appleton Laboratory which has Intel Xeon
X5650 host compute nodes and 512-core NVIDIA Tesla M2090 GPUs. A small number
of calculations are carried out on a local machine with an Intel Xeon X5670 host CPU
and 448-core NVIDIA Tesla S2050 GPUs.
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Figure 1. CPU/GPU computation speed up for the timestepping code with resolution N ⇥N
(e.g. a 256 ⇥ 256 run is ⇡ 4 times faster in the GPU code than the CPU code). Blue dahsed

curve represents single precision acceleration, red double precision.


