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Abstract

In this auxillary material, we provide the detailed model equation
derivation as well as the numerical solution scheme.

1 Derivation of Boussinesq-type Equations for
Dispersive Waves over a Variable-Density Fluid

Following Kim and Lynett (2011), we obtain the dimensionless form of the
spatially filtered continuity and Navier—Stokes equations for incompressible flow:

V-u+w, =0, (1)
p(ur+u-Vu+wu,)+ Vp=auV - (pVZLVu) + g (prius),, (2)

12p (we +u- Vu +ww,) + ps +p = ap’V - (v Vw) + Bu(priws),,  (3)

where V is the horizontal derivative operator, subscripts z and ¢ function as
vertical and time differentiations, respectively, and w = (u,v) is the horizontal
velocity vector. The conditions applied at the free surface and at the bottom
boundary are expressed in dimensionless form as well:

w=G4u-VC at 2=, (4)

w+u-Vh=0 at z=—h (5)
The physical parameters p, u, v, and w are expanded as a power series of

p:

F=Y 1" fn (6)

n=1

The leading order terms of Equation 3 yield the hydrostatic condition,

(pO)Z + po = 07 (7)



which accordingly guarantees
u(w,y, z,t) = uo(z,y,t) + O(1?). (8)

By integrating the continuity equation over depth and applying the free-surface
and bottom-boundary conditions, Equations 4 and 5 will give the relationship
between horizontal and vertical velocities as

Wy = —% (V . ’LL()) -V (h’lLQ) =—25-T. (9)

To determine the horizontal velocity profile, the horizontal vorticity (w) is
examined:

W' =, — V' = h%wl +O0(uh); (10)

this equation indicates that the horizontal vorticity can at most first appear
at O(u?) within our scaling. Assuming that w; is not zero permits rotational
effects induced by bottom stress to be directly included in the velocity profile
(Kim et al., 2009).

From the horizontal vorticity expression, the vertical profile of the horizontal
velocity can be approximated by vertically integrating w; from —h to z,

Ul = Uplem—p — { (;%vs + zVT> - @iﬁvs - hVT) }
+/ widz + O(u?). (11)
—h

The integral of the vorticity term appearing above remains as a “residual” ve-
locity component, and it can be specified depending on the particular physics
of the configuration at hand (e.g., bottom or free-surface stress or stratification
effects).

The horizontal velocity up to O(u?) can then be expressed as

1 1
wu=uwuy + p {u1|z__h - §z2vs —2VT + 5h2vs —hVT  (12)

+ / wldz} +0(u*)

—h

and, following Nwogu’s (1993) approach, we can define u,, evaluated at z = z,
as

1 1
U =ug + p? {u1|z__h - 5z§vs — 2,VT + 5h?vs —hVT  (13)

n / wldz} O,

—h



Subtracting Equation 13 from Equation 12 finalizes the expression of w in terms
of u, as

2
+ o).

1 z
u=1u, -+ MQ{(zZ—ZQ)VS—&—(za—z)VT—i—/ wldz} (14)

Because a main purpose of this study is to extend the derivation to in-
clude internal motion resulting from stratification, the horizontal velocity of the
background internal motion, u?(z), should be included. Here, this component is
interpreted as part of the residual vorticity acting on the barotropic wave, i.e.,

/wldz:ui(z)—&—/ widz, (15)

where wj represents the horizontal vorticity resulting from a bottom stress only.
This decomposition yields

u = uy+ plPui(2) (16)
1 z
+ {2 (22 = 22) VS + (24 — 2) VT+/ widz}
+ O

Note that, in the above, it is implicitly admitted that O(y) = O(u?), because
u®(2) is usually scaled by reduced gravity (e.g., Lynett and Liu, 2002b). As a
result, the direct inclusion of density-driven internal kinematics into the veloc-
ity structure allows for consideration of internal motion effects on free-surface
waves. Although the above expression is flexible in terms of the w(z) that can
be accommodated, the theory is only valid if the magnitude of this component
is small.

For a quantitative description of u!(z), specific cases will be chosen later
for verification. In any case, the horizontal velocity with rotational terms
( f; wjdz') remains undetermined; these rotational terms are assumed to be
related only to the bottom stress (7) (i.e., Kim et al., 2009). Imposing a linear
stress profile from zero at the free surface to 7, at the bed,

Ty C —ZzZ
w; = , 17
' Py (C + h) ()
is all the information that is required. Integration of wj] produces a rotational
velocity component of O(u?) as follows:

/:widz’_\I!{;(22—22)+C(z—za)}, (18)

o

where W = 71,/ {pv} (C+ h)}.



With this, the horizontal velocity up to O(u?) can be finally expressed as
. 1
u=1u, + uzu“r/ﬁ{z (22 = 2*) VS + (24 — 2) VT} (19)
1
+ e {2 (22 = 2°) +( (2 — za)}
+ o).
By utilizing the horizontal velocity profile above, the exact continuity equa-

tion can be given in a depth-integrated format. Integrating Equation 1 from —h
to ¢ and applying boundary conditions (Equations 4 and 5) gives

¢
V~/_hudz+(jt:O. (20)

To express this equation in terms of w,, Equation 19 is substituted, and after
manipulation this yields

G+ V-A{(C+ M) ua} + u* WNp +Np +N7) = O(u?), (21)

where the second-order terms are

Np =-V- {(C+h){<W—Z§)V5+<C;h—za> VTH , (22)

Ng = V. G

¢(§+h){'z§zag+ (¢ —26h—h )H (23)

N,:v-{(uh)ﬁ}, (24)

and where wu’ is the depth-averaged horizontal velocity vector resulting from
internal motion.

Although integration of the continuity equation was straightforward, deriva-
tion of a depth-integrated momentum equation requires a fairly complex pro-
cedure owing to nonlinearity in the equation and the desired removal (through
substitution) of the hydrodynamic pressure term.

From the vertical momentum equation and density profile assumed, the pres-
sure field can be extracted. Substituting Equation 19 into Equation 3 yields

zZ— Z
0 (o) + - T+ w0 (00),} 4+ o {1 =y (2520 )}

=0 (u*, o®, Bp®, yp?) . (25)



Integrating this equation with respect to z gives an expression for pressure,

p = po(C—2)—73po [1“ {C"Sh (C;%)} _IH{COSh <Z;ZO>H

+M2p0{;(z2_<2) St+(Z—C)Tt+%(z2_C2)ua-VS

—I—(z—()ua-VT—;(22—§2)S2—(Z—C)TS}

+ 0 (u*, ap®, B, yp?) (26)

where we have applied Equation 9.
To derive a depth-integrated momentum equation for u,, Equations 19 and
26 can be applied to Equation 2, where each term is written as,

Z— 20

pu; = po(uy), —ytanh ( ) po (Wa), + 12 po (w‘)t

1
+ 12 po {2 (22 = 2*) VS + (20 — 2) VT}

o [\p{; (22 - ) —&—C(z—za)}]t

+O0(ut ), (27)

t

pu-Vu = pouy - Vu, —ytanh (Z(SZO> PoUe - Vug, + u2p0V (ua . u’)

+ 12 poV [ua : {; (22 = 2°) VS + (24 — 2) VTH

+ 1°poV [ua - {; (22 —2%) +( (2 - Za)H

+ 1P po€ + O(p*, yu?), (28)

pw (u), = p*po (zQSVS + 2TV S 4 2SVT + TVT + wow1) + O(u*, yu?), (29)

Vp = Vip(¢—2)}

oo (5} o (52

1 1 1
+ ©po {2Z2V5t -3V (C2Sy) + 2VT, — V ((Ty) + §z2v (o - V)

1 1
-3V (Cua - VS) + 2V (uq - VT) = V ((ug - VT) — 5zQVSQ



n %V (¢2S?) — 2V (TS) +V (CTS)}

+ HQ(VpO){;(22_C2)5t+(z—<)Tt+;(ZQ_CQ)uQ.VS
+ (z—()ua~VT—;(z2—C2)S2—(z—C)TS}
+ O, ap®, B, i), (30)
auV - (,outhVu) =auV - (poythVua) + O(ap?, ayp), (31)

6 v v T v %
o (i), = —Bupov VS - 6u<+—bh + Bupovy (uw') , +O(Bp®, Byp).  (32)
In Equation 28, £ is defined as
1
E= — uyx {Vx {2 (zi-zQ)VS—l—(zu—z)VTH

_ {;(zi—zQ)VS+(za—2)VT} X (V X ug)
— e x (Vxau') —u' x (Vxu,)
— uax(Vx\Il){;(zi—z2)+<(2—za)}

2

— xI:x(qua){l(zg—z2)+c(z—za)}. (33)

Equations 27 to 32 are substituted into Equation 2 to produce the horizontal

momentum equation written in terms of u,. Thus,

v
(ua), + ua~Vua+VC—|—%(C—z)
0

1 1
+ oyl {—2v (¢3Sy) =V (CTy) + §ziVSt + 2, VT,
1 1
— 5v (Cua - VS) =V (Cua - VT) + §v (¢25?)
+%V (220 - VS) + V (zqu - VT) +TVT+V(CTS)}

e ld ) e -]
b v w322 rG )

t



— 12O (C=2) (28 +T) + p2€ + p® (ug + Vg - ')

+ ,ﬂvf’o{l(%<2)St+(z<>Tt+1(zzCz)ua’VS
po 2 2

+ (z—C)ua~VT—%(22—C2) SZ—(z—()TS}
_ 'y{tanh (Z;ZO) (4), + tanh (Z_[SZ()) Uy - Vg

b 2 (o i feon (522) } - feomn (252 ) )

= a,uiV- (pouthVua)
Po

1 7
—Buv; VS — Bu—
Buv, 5Mp0 C+h
Now, the remaining procedure is to eliminate the z dependency in the above
equation; depth-averaging is employed (e.g., see Chen, 2006) over the entire
equation. The resultant form of the depth-integrated momentum equation ap-
pears as

+ By (u') (34)

zz "

v h
(ua), + ua-Vua+v<+p”°(<’; )
0

+ W (Rp+Rp+Rr+Rp+€)

+YRp

1
— aup—V~ (pOVfVua) + Buv; VS
0

1 7 .
+ 5/4%(:% — B { (u) Loc — () oz}
= O(p*, ap®, B®), (35)

in which the higher-order terms are defined as

Rp = %ziVSt + 2, VT, — %v (¢3Sy) =V (CT,) +TVT
+ %v (22ua - VS) + V (2quq - VT) + %v (¢25?)
— %v (Cug - VS) =V (Cuo - VT) + V ((TS), (36)
Rp = (¢ ; ") (®C), — W@t + [\I: (22‘21 - gzaﬂt (37)
o g,y D g, )
R R e






Z2 2 _ 12
e e

+ b { (), — (va), }

where ©, = (Uq, Vo) and ¥ = (%, YY).

2 Numerical Formulation

The derived Equations above are discretized to determine numerical solutions.
In the present work, a conservative-form finite-volume method is adopted for
spatial derivatives while third-order Adams-Bashforth predictor and fourth-
order Adams—Moulton corrector schemes are used for time integration.

Prior to discretization of the governing system, the continuity and momen-
tum equations are converted to the conservative form before applying the finite-
volume method. In this section, all dimensions are recovered with primes (')
omitted for convenience. By utilizing a fixed bottom assumption (h; = 0), the
conservative form of the continuity and momentum equations can be obtained
as

Ht+(HUa)I+(HUa)y+(ND +NB +N1):Oa (43)

1 1 .
(Hua), + (Hui + 29H2> + (Huava), — gHhy + Q(p;.)gﬂﬂ

+ HM® +uy (Np+Np+Np) =0, (44)

1 1
(Hva), + (Huava)x+<Hvi+29H2) —thy-s—?(ppO)ngQ
y 0

+ HMY +v, Np+Np+Np) =0, (45)
where H = ¢ + h and terms of O(u?, v, au, Bu) are given by
(M*MY) = Rp+Rp+Rr+RE+RY+E€

1 Th
— =V (pov'Vu,) + 1’'VS + ——
Po (pors )+ Hpo

P (g ). (40

2.1 Time Integration

The time derivative terms in the above equations are solved by using a third-
order Adams—Bashforth predictor and a fourth-order Adams—Moulton corrector
scheme (Wei et al., 1995; Lynett and Liu, 2002a) to minimize truncation error to
O(At3) (Liu and Wang, 2012). Through an iterative predictor—corrector time-
marching scheme, the solution at the next time step, (n + 1), can be found.



The explicit predictor step is given by

At
¢ ="+ 55 (28E" - 16E" T +5E"7)

At
Pt o= Pt (28F — 16F" T 4+ 5F"7F)

+2F§L - 3F§‘ YRR 4R,

A
Q" = Q"+ 1—; (23G™ —16G" ! 4 5G"72)
+2G% —3GE M + Gy ? + GY,

and the implicit corrector step is written as

Cn+1 Cn ( En+1 + 19En _ En—l _|_ En—Q) ,
At
prtl = pry 51 (9F™*t +19F" —5F" ' + F"7?)

+EP — F? + FY,

Qn—i—l _ Qn (an—i-l + 19Gn 5Gn—1 4 Gn—?)
+Gg+1 - Gg + G4a

(52)

where the superscript n denotes the time step and P and @ are defined numer-

ically as (Kim et al., 2009)

2A 2 Ax? 2Ax 2Azx

P = (ua)ifl’j Hi,j {2’2 _CQ n (Za - C) i—1,5 + CL'C 4 thi—l,j}

Zi — <2 2 (Z(x - C) hi,j
+ (U’a)i,j H;; {1 N N } (53)
N - (2a—Qhiv1;  GC o Ghit
(i Hi { 282 T A2 2Az Az [
Zi — CQ (Zoc - C) i,j—1 CyC Cy 2,7—1
@ = (va)i’jfl Hi’j{ 2Ay? * Ay? + 2Ay 2Ay }
22— 2(2a — Q) hiy
b (), iy {1 B - 2 m O (54
—¢ e Qhijr1 GC Gl
o H > _ _ > ]
T (vadijn Hig { D2 T Ay 20y 27y

10



Subscripts ¢ and j in P and @ identify the cell location. The other terms

included in Equations 47-52 are

E = F, + Ey,
F =F; + Fs 4+ uqFs,
G =G1+ G +vaE2,
where E7, F}, and (G; can rewritten as
By = —{Hun}, — {Hva},

1 1 (po)a
Fl = — {Hui + 2gH2} - {H'Lbal]a}y +th$ - 2(10[?0)91{27

x

1 1
Gr =~ {Huava}, - {Hvi + 29H2} +gHhy — 2(’;)0)3’91{2,
Y 0

and Fs, Fy, G2, F3, and G35 are expressed as

s (S e (-]
+ H{(W — ;zi) VS + (C;h - za) VT}L
[ [ ]
i :Hwy {22& g (2¢2 - 26§h — h?) H x
i v
_ HuL {HUL
(F2,Gy) = H Ev (o - VS) + V (Cug - VT) — %v (¢25?)

- %v (2200 - VS) = V (2quq - VT) — V ((TS)
— (IVT)-V{E(S+T)}] - HE
- E(S+T)V(-— % (¢ —=22) EVS — (( — 2za) EVT

11

(61)



v [(Cﬁ”h)v (e ®) = 219 (- (w0))
N q’{((2+(h6—2h2)S+H2T}

. v{ua. (q, (2—<>)H 1Y ()

_ VpOH{H(_X—"h)(ua-VS—SZ)—I;(ua'VT—ST)}

Po 6

s e (253 e (52))
_ %V {Po§lncosh <C 520)}

1 ¢ _
+ — V{poélncosh(z ZO)}dz
po J_n 1)

1
+ H L}V- (pOVthVua) -’ VS — T
0

Hpo
oo e — )], (62)
Fy = gH(C—22) (va)yy, — H (20— O) (),
+HG{C(va), + (ha), ) (63)
Gy = SH (= 22) (wa)yy — H (20— O (i),
FOHGC (), + (hua), )} (64)

Fy, GY, Ff, and G§ can be rewritten as

Fy

H"(¢? = Ch+h?—322)" H™(C = h—22)"

5 ZP(YT) - 5 2P0
sy - (hG_ %) (p/fo)w 2P(S) + T%ZP(T)

5 [ln {cosh (‘h; ZO)} —In {cosh (C _5’20) H SP(ug),  (65)

H" (¢? — Ch+h?—322)" H™ (( = h—22)"
6 P (vY) - 5 ()
—  H™(h—20)" H"
H"yP (v) _ B - 9 (Ppoo)yzp(S)+2(/;)jyzp(T)

§ [m {cosh (‘h; ZO) } —In {cosh (C ;ZO) H ' ¥P(va),  (66)

12



Hn+1 ((2 _ Ch + h2 o SZi)nJrl H”+1 (C —h— 2Za)n+1

Fy = : (") - 5 (7)
n n+1 n
+ e (i) - H" (h6— 20) (/Z))mEC(S)Jr H;l (p;)m (1)
0 0

— [m {cosh (‘hé_ ZO) } —In {cosh (Cé%) H " 2 (ug) (67)

HTL+1 (C2 _ Ch + h2 _ 3zi)n+l Hn+1 (C _h— 2Za)n+1

G5 = ; Se(yY) — 5 S ()Y()
— H" (h—20)"" (po) H™ 1 (po)
n+1lyc i\ Yy Yy
+ H E(U) : p02(5)+ 5 pOZ(T)

5 [m {Cosh (‘hé_ ZO) } I {Cosh (C _52°> H " (va) , (68)

where Ep(gb) = 2(;5” — 3@3"*1 + ¢n72 and Ec(¢) _ ¢n+1 o (z)n

2.2 Spatial Discretization: Finite-Volume Method

Recently, finite-volume schemes coupled with Riemann solvers have been suc-
cessfully applied to shallow-water (Erduran et al., 2005; Dutykh et al., 2011)
and Boussinesq-type (Tonelli and Petti, 2009; Kim et al., 2009; Shi et al., 2012)
equations and have exhibited relatively robust performance. For the shallow-
water terms embedded in Equations 43, 44, and 45, a fourth-order compact
MUSCL-TVD scheme has been applied and combined with the HLL Riemann
solver (see Kim et al., 2009). The remaining terms, including higher order
spatial derivatives, are differenced by the cell-averaged finite-volume method
proposed by Lacor et al. (2003).
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