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The objective of this electronic supplement is to provide further information on the
experimental protocol and calculations presented in the body of our paper. The contents
are the following:
• Nomenclature, § 1,
• Definition of the local particle transport rate, § 2,
• Decomposition of motion into advection and dispersion, § 3,
• Poisson representation, § 4,
• Steady state solution of the Feller equation, § 5,
• Langevin formulation and calculations of the a moments, § 6,
• Link between the n and a moments, § 7,
• Time correlation functions, § 8,
• Fourier transforms, § 9,
• Experiments 1: velocity probability distribution, § 10,
• Experiments 2: probability distribution of the particle transport rate for a

xed bed, § 11,
• Experiments 3: probability distribution of the particle transport rate for a mobile

bed, § 12.

1. Nomenclature

Here we provide the list of variables used in the paper, their meaning, physical units,
and the reference to the equations or sections, in which they were introduced. In the
present document, numbering differs from that used in the paper. Wherever necessary,
we make clear whether we refer to an equation in the paper or in this document.
Roman symbols

Variable Meaning
A drift function, Eq. (4.15)
A surface
a, a Poisson rate
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Variable Meaning

ai Poisson rate for cell i, Eq. (4.17)
b Poisson rate, Eq. (4.18)
B flume width
C Time correlation function
d particle diameter
D diffusivity
di local diffusion rate, Eq. (4.11)
D diffusion function
Du particle diffusivity, Eq. (3.8)
D deposition rate per unit area in m s−1, Eq. (1.3)
E entrainment rate per unit area in s−1, Eq. (1.3)
f probability density function in the a-space
Fr Froude number Fr = v̄/

√
gh

G generating function)
g gravity acceleration g = 9.81 m s−2

gb spatial correlation function for b, Eq. (4.19)
gγ spatial correlation function for γ, Eq. (4.24)
h flow depth, Eq. (1.1)
K kernel function
k dummy variable
k unit vector
Lz differential operator
ℓc correlation length, Eq. (4.21)
Ma differential operator, this document
M∗

a adjoint differential operator
N number of particles within the window
N0 initial number of particles within the window
〈N〉 mean number of particles within the window
ṅ instantaneous particle flow rate in beads/s, Eq. (2.2)
p parameter of the negative binomial distribution, Eq. (3.2)
P probability density function
Ps probability density function for steady-state processes
Pe Péclet number Pe = ūs∆x/Du, Eq. (4.8)
Q macroscopic sediment transport rate per unit width in m2 s−1, Eq. (6.1)
Qs volume particle flow rate in m3 s−1

q̄s mean volume particle sediment rate per unit width in m2 s−1

qs instances particle sediment rate per unit width in m2 s−1, Eq. (2.1)
r position vector
rp parameter of the Poisson distribution, Eq. (3.5)
rnb parameter of the negative binomial distribution, Eq. (3.2)
R ratio R = ℓc/∆x
Re flow Reynolds number Re = v̄h/νw
S wavenumber spectrum, Eq. (4.27)
Sh Shields number Fr = ̺h sin θ/[(̺p − ̺)d]
t time
tr relaxation time)
tc autocorrelation time
ta characteristic time of advection, Eq. (4.8)
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Variable Meaning

td characteristic time of diffusion, Eq. (4.8)
Un arithmetic particle velocity for an ensemble of n particles, Eq. (2.1)
ūs mean particle velocity in m s−1

up, up particle velocity in m s−1

v̄ fluid velocity in m s−1, Eq. (1.1) and (1.2)
V control volume
W Wiener process
Wi local Wiener process, Eq. (4.17)
x streamwise coordinate, figure 1
x position vector
y normal coordinate, figure 1
ys elevation of the free surface, figure 1
yb elevation of the bed surface, figure 1
z dummy variable of the generating function
z space coordinate

Greek and compound symbols

variable meaning

α parameter of the Gamma distribution
β parameter of the Gamma distribution
δ Kronecker symbol
η dimensionless groupe η = ∆x/(ūs∆t)
∆t time increment
∆x space increment
ǫ error
γ particle activity, Eq. (2.1) in m
Γ gamma function
Γo strength of the initial sediment pulse, § 4.1
κ difference κ = σ − µ in 1 s−1

λ volumetric entrainment rate per unit area in m s−1

λ′ entrainment rate in 1 s−1

µ collective entrainment rate in 1 s−1

ν dummy variable
νw kinematic water viscosity in m2 s−1

ω rotation velocity in rad s−1

ω angular frequency in the Fourier transform
φ particle concentration
̺ fluid density in kg m−3

̺p particle density in kg m−3

σ deposition rate in 1 s−1

τb bottom shear stress in Pa, Eq. (1.2)
τ lag time in s
θ local bed slope, Eq. (1.2)
̟p particle volume per unit width in m2

ξ Gaussian noise increment in s−1/2

ξb space and time Gaussian noise increment in m−1/2s−1/2, Eq. (4.18)
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variable meaning

ζb bed porosity, Eq. (1.3)
ζ dimensionless group
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2. Definition of the local sediment transport rate at the microscopic

scale

In this section, we pay special attention to the definition of the sediment transport rate
within a probabilistic framework. The physical system under investigation is composed of
an array of Nm spherical particles with diameter d. Most of these particles are stationary,
forming the granular bed over which the water stream flows, but some of them can be
entrained and transported by the flow. The state of the system is described by a state
vector S comprising the positions of the centres of mass of the labelled particles xk,
their translational velocities up,k and their rotational velocities ωk. We also assume that
the system has reached a statistically stationary state, i.e. the probability P (S|v̄, h) of
finding the system in a given configuration S does not depend explicitly on time t.
Here, P (S|v̄, h)dx1 · · · dxNm

du1 · · · duNm
dω1 · · · dωNm

denotes the probability that the
centres of mass are found simultaneously in the volume element dx1 about the point x1,
dx2 about the point x2, etc, with the respective velocities (u1,ω1), (u2,ω2), etc, given
that the water velocity v̄ and the flow depth h are known. We also introduce Pi(x,up,ω),
the marginal density probability of finding the particle i at x with translational and
rotational velocities (up,ω). Similarly, P x

i (x) =
∫

ω

∫

up
Pi(x,up,ω)dωdup denotes the

marginal density probability of finding the particle i at x. For the sake of simplicity, we
do not take into account the conditionality of these probabilities, which depend on the
knowledge of v̄ and h.
The particle flux Qs through a surface A located at a position x is the found by

computing the probability that the centre of mass xi = (xi, yi, zi) of a given particle lies
within x−d/2 and x+d/2 and crosses A with velocity u = up,i+ωi×r with r = x

′−x

the vector from the centre of mass to a point x
′ of A, then summing up over the state

vector (see figure 1) to give

Qs =

Nm
∑

i=1

∫ x+a

xi=x−a

dx

∫

y,z

dydzP x
i (x)

∫

x
′∈A

d|x′|
∫

ω

∫

up

Pi(up,ω|x; v̄, h)(u · k)dωdup

(2.1)
with k the normal to the surface. This definition is prohibitively complex and of little use
if we would like to implement it for practical purposes. We use the following assumptions
to simplify the problem. First, we assume that we can replace the ensemble average by a
volume average over a control volume V of length ∆x, which is arbitrary for the moment,
and centred around x. The flow depth varies sufficiently slowly over ∆x to be viewed as
constant.
Second, as we are mainly interested in a two-dimensional problem, we ignore what

happens in the z-direction and consider a particle transport rate per unit width qs. In
the following, any volume is to be understood as a volume per unit width.
Third, we consider that the particle velocities (up,ω) depend on the downward pro-

jected position x as they are likely to depend on the fluid velocity v̄ and depth h,
so that we can relax the conditional dependence on the particle position x in Pi :
Pi(up,ω|x; v̄, h) = Pi(up|v̄, h). Because the volume integration of the rotational velocity
field ωi × r is zero, the contribution of the rotational velocity to the velocity flux is zero
for all particles entirely contained in the control volume V (but not, strictly speaking,
for particles whose volume lies partially outside V). This implies that

∫

ω

∫

up

Pi(up,ω|x; v̄, h)(u · k)dωdup ≈ ūs(V ; v̄, h) =
1

V

(

k ·
∫

∆x

updV
)

, (2.2)

ūs(V ; v̄, h) denotes the mean particle velocity inside the control volume V .
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Figure 1. Schematic showing the integration of the particle flux.

Fourth, as a first approximation, we assume that the particles are uniformly distributed
along the x-direction within V so that

Nm
∑

i=1

∫ x+a

xi=x−a

dx

∫

y,z

dydzP x
i (x)

∫

x
′∈A

d|x′| ≈ Vp

V A = φA, (2.3)

in which Vp denotes the volume occupied by the particles and φ(x, t;V) = Vp/V is the
(volume) particle concentration within V . If we refer to the number of moving particles
in V as N and to the volume particle (per unit width) as ̟p, we can also express φA as
N̟p/∆x.
These assumptions lead us to define the sediment transport rate per unit width (within

V) at the microscopic scale as

qs(x, t;V ; v̄, h) = φ(x, t;V)h(x, t)ūs(V ; v̄, h), (2.4)

or equally, we can define the sediment transport rate as the time variation in the number
of moving particles

ṅ =
N

∆x
ūs(V ; v̄, h). (2.5)

In the body of the paper, we have followed Furbish et al. (2012) and used the particle
activity γ(x, t) = φ(x, t;V)h(x, t) = N̟p/∆x rather than the particle concentration.
A word of caution concerns the equivalence between the discrete and continuous vari-

ables N and γ(x, t). Essentially, when using N , we count the number of particles whose
centres of mass are included in the control volume V , whereas γ(x, t) represents the vol-
ume of the particles inside V . Near the boundaries of V , particles can lie partially outside
the volume and therefore, there is a small error induced by the consideration of a strict
equivalence between the two variables. To evaluate this error, let us consider three ad-
jacent cells of length ∆x. The number of particles in each cell is Nk, with k = i − 1, i,
and i + 1. We assume that the particles are uniformly distributed within each cell i so
that the probability of finding the centre of mass of a particle at abscissa x is given by
the uniform distribution pi(x) = Ni/∆x. All of the particles for which the distance r
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between the centre of mass and the cell boundary is lower than d/2 cross this boundary
and part of their volume is to be excluded from the total particle volume in the cell. For
a particle that is a distance r away from the boundary, the excluded volume is

V (r) = π

(

d

2

)3 ∫ π/2

θ

sin3 ψdψ = π

(

d

2

)3(

2
r

d
− 2

3

( r

d

)3
)

with cos θ = 2
r

d
. (2.6)

The total excluded volume from cell i is then

V excl.
i =

∫ d/2

0

pi(r)V (r)dr =
5

192

πd4

∆x
Ni (2.7)

The adjacent cells i−1 and i+1 also have protruding particles and therefore, the volume
balance is

V bal.
i =

∫ d/2

0

pi(r)V (r)dr =
5

192

πd4

∆x
(2Ni −Ni+1 −Ni−1), (2.8)

leading to a relative error

ǫ =
V bal.
i

N 4
3π
(

d
2

)3 =
5

32

d

∆x

2Ni −Ni+1 −Ni−1

Ni
, (2.9)

which is o(d/∆x). Note that in the limit of ∆x → 0, we can interpret the last term on
the right-hand side of (2.9) as a second-order finite difference and thus,

ǫ = − 5

32

d∆x

γ

∂2γ

∂x2
, (2.10)

showing that ǫ→ 0 provided that γ is locally nonzero.

3. Advection and dispersion of a particle cloud

3.1. Calculation of the diffusion coefficient D
The objective of this appendix is to show that (i) the displacement processes occur-
ring in a particle cloud during a time increment ∆t can be broken down into advection
and isotropic dispersion under certain conditions, (ii) we can calculate the coefficient of
diffusion from the various parameters, in particular the particle diffusivity Du. Let us
consider that at time t, there is a cloud of N particles uniformly occupying the control
volume V of length ∆x, as shown by figure 2. The probability of finding the particle at
x ∈ [0,∆x] is then the uniform distribution fx(x) = N/∆x if x ∈ [0,∆x], and fx(x) = 0
for x /∈ [0,∆x].
Each particle moves at a velocity U , whose probability distribution is given by the

truncated Gaussian distribution (3.11) of the paper

fu(u) =

√

2

π

ζ

ūs

1

1 + erf(ζ/
√
2)

exp

(

−ζ
2

2

(

u

ūs
− 1

)2
)

with ζ = ūs

√

tr
Du

. (3.1)

At time t+∆t, a particle initially at x will have moved at

x′ = x+ u∆t, (3.2)

or in a dimensionless form

x̃′ = x̃+ η−1ũ with η =
∆x

ūs∆t
, (3.3)

where the variables have been scaled as follows: x̃ = x/∆x and ũ = u/ūs . The probability
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U

U ∆t

0  ∆x
x

 ∆x+u ∆t
s

Figure 2. At time t, the volume [0,∆x] contains N particles (in black). We are interested in
calculating the displacement of the particles at time t+∆t knowing that the velocity probability
distribution of the particles is fu(u).

distribution of x̃′ is related to the scaled convolution of the probability distributions of
x and u:

fx̃′(x̃′) = Gu(ζ, η)N

∫ min(x̃′,1)

0

Fu(x̃
′ − x̃, ζ, η)dx̃,

= N

erf

(

ζ√
2
(1− ηmax(0, x̃′ − 1))

)

− erf

(

ζ√
2
(1− ηx̃′)

)

1 + erf

(

ζ√
2

) , (3.4)

where we have introduced the following functions (stemming from the velocity distribu-
tion made dimensionless):

Gu(ζ, η) =

√

2

π

ηζ

1 + erf(ζ/
√
2)

and Fu(ν, ζ, η) = exp

(

−ζ
2

2
(ην − 1)

2

)

. (3.5)

Theoretically, we expect that the cloud has been advected by the water stream at the
mean velocity ūs. If all of the particles were advected at this velocity, then the cloud
initially occupying [0, 1] (in the dimensionless space) would then span over [η−1, 1+ η−1]
at the later time t+∆t. However, as the particles’ velocity fluctuates, some of the particles
will lie outside this interval. Some of them will lag behind

Nleft =

∫ 1/η

0

fx̃′(x̃′)dx̃′ = N
1

ηζ

√

2

π

1− exp[−ζ2/2]
1 + erf(ζ/

√
2)

(3.6)

while others will be ahead of this interval:

Nright =

∫ ∞

1+1/η

fx̃′(x̃′)dx̃′ =
N

ηζ

√

2

π

1− exp[−η2ζ2/2]
1 + erf(ζ/

√
2)

+N
1− erf(ζη/

√
2)

1 + erf(ζ/
√
2)
. (3.7)

For ζ > 2, due to the fast decay in the ζ contributions, the two relative outflow numbers
are nearly identical. For ζ ∼ 1, these numbers differ significantly, by approximately a
factor of 2, as shown by figure 3. This shows that when ζ > 2, the displacement of the
cloud can be split into two parts: a translation due to advection (displacement at the
mean velocity ūs) and scattering with a scaled coefficient of diffusion. Figure 4 plots
the probability density function fx̃′(x̃′) for three values of ζ (and for η = 1): for low ζ
values (here ζ = 1), the distribution is markedly asymmetric while at larger ζ values
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Figure 3. Variation in Nleft/N and Nright/N as a function of η for ζ = 1 (on the left) and
ζ = 2 (on the right). For ζ > 3, the curves Nleft/N and Nright/N collapse.
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Figure 4. Probability density function of the position x̃′ for η = 1 and three different values of
ζ: ζ = 1 (black online), ζ = 2 (blue online), and ζ = 5 (red online). The dashed line represents
the advection of the initial control volume (displacement by η−1 in the dimensionless space).

(here ζ = 5), the shape of the distribution approaches that of a normal distribution. This
shows that for ζ < 2, particle velocity fluctuations give rise to anisotropic scattering,
which contrasts to our simple jump process (4.11) in the paper.

To calculate the diffusion coefficient D, let us draw an analogy with the following
initial boundary-value problem, in which N particles contained in a narrow box [0,∆x]
are released at t = 0. The particle concentration φ(x) follows the diffusion equation

∂φ

∂t
= D∂

2φ

∂x2
, (3.8)

subject to φ(x, 0) = N/∆x for 0 6 x 6 ∆x and φ(x, 0) = 0 for x /∈ [0,∆x], φ(±∞, t) = 0,
and

∫

x
φ(x, t)dx = N . The solution is

φ(x, t) =
1

2
erf

(

x√
4Dt

)

− 1

2
erf

(

x−∆x√
4Dt

)

. (3.9)
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In a dimensionless form, the variance at a time ∆t after release is found to be

varφ = N

(

1

12
+ 2

D
ū2s∆t

η−2

)

. (3.10)

As the initial and boundary values are the same for the two problems, we expect that
the moments of the distributions (3.9) and (3.4) match at early times, which should give
a way of estimating D. From (3.4), we can compute the variance of the displacement

var x̃′ = N

(

1

12
+A(ζ)η−2

)

, (3.11)

A(ζ) =
π + π(B2(ζ) − 1)−

√
2πζB(ζ)e−ζ2/2 − 2e−ζ2

πζ2B2(ζ)
=

1

ζ2
+O(ζ−3), (3.12)

where we have used

B(ζ) = 1 + erf(ζ/
√
2).

As the probability of finding a particle at x′ can also be interpreted as the concentration φ,
we can compare the variances (3.10) and (3.9) and deduce an expression for the diffusion
coefficient D

D =
1

2
A(ζ)ū2s∆t ≈

1

2

ū2s∆t

ζ2
=

1

2

∆t

tr
Du. (3.13)

This shows that if we select the time step ∆t properly (∆t = 2tr), the two coefficients of
diffusion Du and D are equal.

3.2. Probability of a long displacement

By assuming that diffusion can be treated as a local jump process, we must ensure that
some particles are unlikely to travel long distances (super-diffusion), e.g., one particule
starting from cell i and arriving at cell i + k with k > 1. With the velocity probability
distribution (3.1), we can also compute the probability that the displacement of the
particles during the time ∆t exceeds the length ∆x of a control volume V

Prob(U > ∆x/∆t) =
erfc(ζη/

√
2)

1 + erf(ζ)
(3.14)

= e−ζ2η2

(

1

1 + erf(ζ)

1

ζη
+O

(

1

ζ2η2

))

.

This excess probability decreases very quickly with ζη. Typically, with ζη = 5, this
probability is order 10−10. In practice, this means that most particles will move over a
length that is much smaller than the volume length ∆x. The probability of a particle
jumping from i to i+ 2 or further is vanishingly small.

4. Poisson representation

4.1. Definition

Following Gardiner (1983), we assume that we can expand P (n, t) as a superposition of
Poisson distributions

P (n, t) =

∫

a

e−aan

n!
f(a)da, (4.1)

where the integration is made over a domain to be specified and f(a) is a positive real-
valued function. Within the framework of distribution theory, this representation always
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exists since if we introduce the distribution

f(a;m) = ea
(

− ∂

∂a

)m

δ(a)

we can check that this is a probability distribution function by integrating by parts
∫

a

f(a;m)da =

∫

a

ea
(

− ∂

∂a

)m

δ(a)da = (−1)2m
∫

a

eaδ(a)da = e0 = 1

as ∂aδ = −δ and for any distribution T and function φ, we have
∫

T ′φda = −
∫

Tφ′da.
Moreover

∫

a

f(a;m)
e−aan

n!
da =

∫

a

an

n!

(

− ∂

∂a

)m

δ(a)da = (−1)m
m!

n!

∫

a

an−mδ(a)da,

= an−m|a=0,

= δ(m− n).

Since the δ function has a representation in the a-space, any probability distribution can
formally be represented using the Poisson distribution (4.1).

4.2. Generating function

The generating function (3.12) of the paper is equivalent to

G(z, t) =

∞
∑

n=0

zn
∫

a

e−aan

n!
f(a)da =

∫

a

exp[a(z − 1)]f(a, t)da, (4.2)

which can also be put in functional form

G(z, t) = {K, f}, (4.3)

where the braces and K represent the inner product and the Laplace kernel, respectively

{f, g} =

∫

a

f(a)g(a)da and K(z, a) = exp[a(z − 1)] (4.4)

for any functions f and g. We introduce the linear operator (acting on z)

Lz[G] = λ′(z − 1)G+ (z − 1)(µz − σ)
∂

∂z
G. (4.5)

We are looking an operator Ma acting on a such that

Lz[G] = {Lz[K], f} = {Ma[K], f} (4.6)

As we have

Lz[K] =

(

λ′(z − 1) + (z − 1)(µz − σ)
∂

∂z

)

K, (4.7)

= (λ′(z − 1) + a(z − 1)(µz − σ))K,

=
(

(λ′ + a(µ− σ))(z − 1) + aµ(z − 1)2
)

K,

=

(

(λ′ + a(µ− σ))
∂

∂a
+ aµ

∂2

∂a2

)

K,

we are then led to define

Ma = (λ′ + a(µ− σ))
∂

∂a
+ aµ

∂2

∂a2
(4.8)
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The adjoint M∗
a of Ma satisfies the relation

{Ma[K], f} = {K,M∗
a [f ]} (4.9)

Let us integrate by parts

{Ma[K], f} =

∫

a

Ma[K]f(a)da, (4.10)

=

(

[K(λ′ + a(µ− σ))f ]−
∫

a

K
∂

∂a
[(λ′ + a(µ− σ))f ]da

)

+ (4.11)

µ

([

af
∂K

∂a

]

−
∫

a

∂K

∂a

∂af

∂a
da

)

,

=

[

K(λ′ + a(µ− σ))f + µaf
∂K

∂a

]

−
∫

a

K
∂

∂a
[(λ′ + a(µ− σ))f ]da−

µ

([

K
∂af

∂a

]

−
∫

a

K
∂2af

∂a2
da

)

,

=

[

K(λ′ + a(µ− σ))f + µaf
∂K

∂a
− µK

∂af

∂a

]

+

∫

a

K

(

µ
∂2af

∂a2
− ∂

∂a
[(λ′ + a(µ− σ))f ]

)

da.

The domain of integration is chosen so that the terms within the square brackets cancel
out and if so, we can define the adjoint operator

M∗
a [f ] = µ

∂2af

∂a2
− ∂

∂a
[(λ′ + a(µ− σ))f ]. (4.12)

To summarize the different steps, we have transformed the initial differential problem

∂G

∂t
= Lz[G] with G(z, t) = {K(z, a), f(a, t)},

into
{

K,
∂f

∂t

}

= {Lz[K], f} (4.13)

= {K,M∗
a [f ]},

The governing equation for f is then

∂f

∂t
= µ

∂2af

∂a2
− ∂

∂a
[(λ′ + a(µ− σ))f ]. (4.14)

The solution is a density probability function (noncentral chi-square distribution) is
found; see Cox et al. (1985) for the details. Equation is singular at a = 0 (transfor-
mation from a parabolic to a hyperbolic problem). The solutions to (4.2) have been
studied by Feller (1951) and Sacerdote (1990). Feller (1951) showed that the case λ′ < µ,
the problem is nearly regular and solutions with different boundary conditions can be
determined. For µ < λ′, there exists a positivity and norm preserving solution of the ini-
tial value problem such that both it and its flux vanish at x = 0. This means that x = 0
acts both as absorbing and reflecting barrier. If the former condition is met (λ′ < µ),
f tends to infinity when a → 0, which means that a = 0 corresponds to the highest
probabilities (mode of f), but is never reached. In the latter case, f(a, t) = 0, the mode
of f is somewhere within (0,∞).
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5. Steady state solution of the Feller equation

Under steady state conditions, (4.2) can be integrated twice:

µ
∂af

∂a
= (λ′ + a(µ− σ))f + c1 (5.1)

and taking c1 = 0 (f → 0 and ∂a(af) → 0 when a→ ∞), then

f(a) =
aλ

′/µ−1 exp[−(σ − µ)a/µ]

c2
(5.2)

with c2 a constant of integration. This can be interpreted as the gamma distribution
Ga(α, β) with parameters α = λ′/µ > 0 and β = µ/(σ − µ) > 0 :

Ga(x;α, β) =
xα−1 exp[−x/β]

Γ[α]βα

This gives the constant of integration : c2 = Γ[α]βα. We then deduce that

Ps(n) =

∫

a

e−aan

n!
Ga(a;α, β)da = NegBin(n, r, p) =

Γ[r + n]

Γ[r]
pr(1− p)n, (5.3)

with r = α = λ′/µ and p = 1/(1 + β) = 1− µ/σ. We retrieve the results given above.

6. Langevin formulation and calculations of the a moments

As (4.2) takes the form of a Fokker-Planck equation with the following drift and dif-
fusion functions A = λ′ + a(µ − σ) and D = 2µa, we can also interpret the process in
terms of a Langevin equation for a

da = Adt+
√
DdW (t) = (λ′ + a(µ− σ))dt+

√

2µadW (t), (6.1)

with W (t) a Wiener process. Note the amplitude of the noise term. In the absence of
collective entrainment (µ = 0 then D = 0), the process is purely deterministic and we
have

da

dt
= λ′ − a(σ − µ) ⇒ a(t) =

λ′

σ − µ
+ a0 exp[−(σ − µ)t].

When collective entrainment occurs (µ > 0), the process is random, with a multiplicative
noise term. Note that (6.1) has also been studied in economics (Cox et al. 1985) to model
short-term interest rates and in soil physics to model nitrous oxide emission (Pedersen
2000). In that case, the solution to (6.1) subject to a(0) = a0 is

a(t) = a∞ + (a0 − a∞) exp[−κt] +
√

2µ exp[−κt]
∫ t

0

exp[κt′]
√

a(t′)dW (t′), (6.2)

with a∞ = λ′/(σ−µ) the steady-state solution κ = σ−µ. We then deduce the expectation

〈a(t)〉 = a∞ + (a0 − a∞) exp[−κt]. (6.3)

Using the Itô formula, we deduce that a2 satisfies

da2 = 2 (µa+ (λ′ − a(σ − µ))a) dt+ 2a
√

2µadW (t),

then the second-order moment 〈a2(t)〉 is given by

d

dt
〈a2〉 = 2(µ+ λ′)〈a〉 − 2(σ − µ)〈a2〉.
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After integration and a few algebraic manipulations, we find that the variance is

var a(t) = 2
µ

κ
a0 exp[−2κt](exp[κt]− 1) +

µ

κ
a∞ exp[−2κt](exp[κt]− 1)2 (6.4)

Note that this result can be obtained directly from the solution (6.2) using the fact that
a is a non-anticipating function

var a = 〈(a(t)− 〈a〉)2〉 =
〈

2µ exp[−2κt]

(
∫ t

0

exp[κt′]
√

a(t′)dW (t′)

)2
〉

, (6.5)

= 2µ exp[−2κt]

〈

(
∫ t

0

exp[κt′]
√

a(t′)dW (t′)

)2
〉

,

= 2µ exp[−2κt]

∫ t

0

〈exp[2κt′]a(t′)〉 dt′,

= 2µ exp[−2κt]

∫ t

0

exp[2κt′] 〈a(t′)〉 dt′,

= 2µ exp[−2κt]

∫ t

0

exp[2κt′](a∞ + (a0 − a∞) exp[−κt′])dt′,

= 2
µ

κ
a0 exp[−2κt](exp[κt]− 1) +

µ

κ
a∞ exp[−2κt](exp[κt]− 1)2.

The covariance for t > s is

cov((a(s), a(t)) = 〈(a(s) − 〈a〉)(a(t) − 〈a〉)〉, (6.6)

=

〈

2µ exp[−κ(t+ s)]

∫ min(s,t)

0

〈exp[2κt′]a(t′)
〉

dt′,

= 2
µ

κ
a0 exp[−κ(s+ t)](exp(κs)− 1) +

µ

κ
a∞ exp[−κ(t+ s)](exp(κs)− 1)2,

= exp[−κ(t− s)]var a(s),

which shows that the autocorrelation is

ρ(τ) =
cov((a(s), a(s + τ))

var a(s)
= e−κτ . (6.7)

7. Link between the n and a moments

The Poisson representation enjoys a very useful property, which turns out to be very
practical as there is no easy way to retrieve P (n, t) from f(a, t). The factorial moments
of n are equal to the moments of a

〈n(n− 1)(n− 2) . . . (n− p+ 1)〉 =
∫

a

∞
∑

n=0

n(n− 1)(n− 2)(n− p+ 1)
e−aan

n!
f(a, t),(7.1)

=

∫

a

apf(a, t),

= 〈ap〉
We then have

〈n〉 = 〈a〉 (7.2)

〈n2〉 = 〈a2〉+ 〈a〉.
(7.3)
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These relationships hold true when taken at the same time t. We can also define con-
ditional averages. For instance, given the initial conditions a(s) = a′ and n(s) = n′, we
define the mean value of a and n at time t as

〈a|(a′, s)〉 =
∫

a

af(a, t|a′, s)da and 〈n|(n′, s)〉 =
∑

n

nP (n, t|n′, s).

There is a connection between the initial conditions a(s) = a′ and n(s) = n′ in the n-
and a-spaces. Let us consider the probability distribution

f(a, s|a′, s) = prob[a(s) = a′] = δ(a− a′).

It is associated with a distribution in the n-space

P (n, s|a′, s) =
∫

a

e−aan

n!
f(a, s|a′, s)da =

∫

a

e−aan

n!
δ(a− a′)da =

e−a′

a′n

n!
. (7.4)

At later times, the probability P (n, t|a′, s) evolves. It can be determined by summing
over all the possible initial conditions n(s) = n′ in the n-space

P (n, t|a′, s) =
∑

n′

P (n, t|n′, s)P (n′, s|a′, s)

This relation makes it possible to link the conditional averages in the n- and a-spaces

〈a|(a′, s)〉 =
∫

a

af(a, t|a′, s)da = 〈n|(a′, s)〉 =
∑

n

nP (n, t|a′, s) (7.5)

=
∑

n

n
∑

n′

P (n, t|n′, s)P (n′, s|a′, s),

=
∑

n,n′

nP (n, t|n′, s)
e−a′

a′
n′

n′!
,

=
∑

n′

〈n|(n′, s)〉e
−a′

a′n
′

n′!
.

8. Time correlation functions

The relationship between the covariances 〈n(t)n(s)〉 and 〈a(t)a(s)〉 in the n- and a-
spaces exhibits a more complicated dependence

〈a(t)a(s)〉 =
∫

a,a′

a a′f(a, t; a′, s)dada′ (8.1)

=

∫

a,a′

a a′f(a, t|a′, s)f(a′, s)dada′

=

∫

a′

a′〈a|(a′, s)〉f(a′, s)da′.

Making use of (7.5), we deduce

〈a(t)a(s)〉 =
∫

a′

a′
∑

n′

〈n|(n′, s)〉e
−a′

a′
n′

n′!
f(a′, s)da′, (8.2)

=
∑

n′

〈n|(n′, s)〉
∫

a′

e−a′

a′n
′+1

n′!
f(a′, s)da′.
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Note that we have

e−a′

a′
n′+1

n′!
=

(

−a′ ∂
∂a′

+ n′

)

e−a′

a′
n′

n′!
,

from which we deduce that

∫

a′

e−a′

a′n
′+1

n′!
f(a′, s)da′ =

∫

a′

(

−a′ ∂
∂a′

+ n′

)

e−a′

a′n
′

n′!
f(a′, s)da′, (8.3)

=

∫

a′

(

−a′ ∂
∂a′

+ n′

)

e−a′

a′
n′

n′!
f(a′, s)da,

= n′P (n′, s)−
∫

a′

(

a′
∂

∂a′

)

e−a′

a′
n′

n′!
f(a′, s)da.

Since we have 〈n(t)n(s)〉 = ∑n′ n′P (n′, s)〈n|(n′, s)〉 and 〈n|(a′, s)〉 = 〈a|(a′, s)〉, substi-
tuting (8.3) into (8.2) and making use of (7.4) leads to

〈a(t)a(s)〉 = 〈n(t)n(s)〉 −
∑

n′

∫

a′

〈n|(n′, s)〉
(

a′
∂

∂a′

)

e−a′

a′
n′

n′!
f(a′, s)da, (8.4)

= 〈n(t)n(s)〉 −
∫

a′

(

a′
∂

∂a′

)

∑

n′

〈n|(n′, s)〉e
−a′

a′
n′

n′!
f(a′, s)da,

= 〈n(t)n(s)〉 −
∫

a′

(

a′
∂

∂a′

)

∑

n′

〈n|(n′, s)〉P (n′, s|a′, s)f(a′, s)da,

= 〈n(t)n(s)〉 −
∫

a′

(

a′
∂

∂a′

)

〈n|(a′, s))〉f(a′, s)da,

= 〈n(t)n(s)〉 −
∫

a′

(

a′
∂

∂a′

)

〈a|(a′, s))〉f(a′, s)da,

= 〈n(t)n(s)〉 −
〈

a′
∂

∂a′
〈a|(a′, s))〉

〉

.

The final relation reads

〈n(t)n(s)〉 = 〈a(t)a(s)〉 +
〈

a′
∂

∂a′
〈a|(a′, s))〉

〉

. (8.5)

Note that if we assume that t is sufficiently large for the conditional probability f(a, t|a′, s)
to approach the steady state distribution fss = Ga(a;α, β), then the second term on the
right-hand side cancels out.

9. Fourier transforms

9.1. Spread from a concentrated instantaneous source

Using Fourier transform in the space variable, we can transform (4.7) of the paper

∂F
∂t

= − F
Pe

(

ω2 + ıωPe + R2
)

with F(ω, t) =

∫ ∞

−∞

γ̃∗(x̃, t)e−ıωx̃dx̃. (9.1)

Given the initial condition:

F(ω, 0) = Γ̃0 (9.2)
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we can solve (9.1)

F(ω, t) = Γ̃0 exp
[

−Pe−1
(

ω2 + ıωPe + R2
)

t
]

(9.3)

Taking the inverse fourier transform of (9.3), we obtain:

〈γ̃∗〉 = Γ̃0

√
Pe√

4πt̃
exp

[

−Pe

(

(

x̃− t̃
)2

4t̃
+

(

R

Pe

)2

t̃

)]

. (9.4)

9.2. Spatial correction and spectrum

Using Fourier transform in the space variable, we can transform (4.20) of the paper in
the limit t→ ∞

−ω2DuF − κF + µ〈b〉s = 0 with F(ω) =

∫ ∞

−∞

gs(r)e
−ıωrdx̃, (9.5)

whose solution is straightforward

F =
µ〈b〉s

Duω2 + κ
. (9.6)

Taking the inverse Fourier transform, we find

gs(r) =
1

2

µ〈b〉s
κℓc

e−r/ℓc with ℓc =

√

Du

κ
. (9.7)
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Figure 5. Snapshot showing the tracking of the particles

10. Experiments 1: velocity probability distribution

We conducted experiments on a 2.5 meter long steep slope flume. The erodible bed
was made of uni-sized natural sediment particles of mean diameter 8±1.5 mm. The
flume was 8 cm wide and the water depth ranged from 1 to 3 cm during experiments.
This setup was able to reproduce the fully turbulent flow of natural steep rivers, while
avoiding complex 3-dimensional patterns like meanders and bars owing to the high water
depth to channel width ratio. Moreover, the extremely narrow grain size distribution
limited fluctuations due to size segregation and other related phenomena (Frey & Church
2009). Water discharge was adapted to meet the incipient motion condition (low Shields
stress). Constant feeding of sediment guaranteed global equilibrium between erosion and
deposition.
Particle motion was tracked using a high speed camera over a 40-cm length (Phantom

v640 operated at 150 Hz with a field of 800× 104 px). Trajectories of individual particles
were captured using a particle tracking method based on the Matlab ‘polyparticletracker’
routines (Rogers et al. 2007). In addition to the particle tracking, sediment fluxes were
measured both at the entrance and at the output of the flume by a new technique detailed
as follows. Upon leaving the channel, each particle hits a metallic plate and the impact
is recorded by a small accelerometer tied to the plate. A peak-over-threshold method
is then applied to detect the times of the consecutive particle impacts. To validate the
method, we measured the output weight of sediment systematically during experiments.
See (Heyman et al. 2013) for further information.
Figure 5 shows a snapshot with the trajectories determined using the polyparticletracker-

based Matlab script. Note that the bed was not free of bedforms and so the statistics of
particle velocities was, to some degree, affected by these bedforms. As when conducting
experiments over long times at low sediment transport stages, one is usually faced with
such bed topography, we failed to obtain perfectly homogeneous bed configurations.
Figure 6 shows the same information as that presented in figure 8 in the paper, but

in different ways. For the sake of comparison, figure 6(a) is the same as figure 8 in
this paper. Looking at the cumulative distribution function shows that the truncated
Gaussian function fits well the experimental data, the exponential distribution does not.
The PP and QQ tests confirm this result. The QQ plot of figure 6(c) reveals, however,
that there is a slight discrepancy between the truncated Gaussian function (3.41) of the
paper and the empirical quantiles, but this could be anticipated as the particles can
hardly move faster than the mean water flow.
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Figure 6. (a) Empirical probability density function (histogram) of the instantaneous particle
velocities computed from 755 trajectories; the thick solid line is the theoretical distribution (3.41)
of the paper, and for the sake of comparison, we have also plotted the exponential distribution
(thin red curve). (b) Cumulative distribution function of the data and theoretical predictions.
(c) QQ plot: we have plotted the empirical quantile as a function of the theoretical quantile.
Perfect matching is achieved when the points collapse onto the first bissectrice. (d) PP plot:
we have plotted the theoretical probability as a function of the theoretical probability. Perfect
matching is achieved when the points collapse onto the first bissectrice. The flow conditions
were the following: depth-averaged velocity of water v̄ = 92.5 cm s−1, mean flow depth h = 2
cm, Froude number Fr = v̄/

√
gh = 2.1, flow Reynolds number Re = v̄h/νw = 18 × 103 (νw

kinematic viscosity), Shields number Sh = ̺h sin θ/[(̺p − ̺)d] = 0.042.
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Figure 7. Sketch of the experimental setup.

11. Experiments 2: probability distribution of the particle transport

rate for a fixed bed

11.1. Experimental setup

We conducted our experiments in a narrow flume in which sediment consisted of glass
beads of equal size. This is very simple laboratory representation of bed load transport,
with the advantages that boundary conditions are perfectly controlled and a wealth of
information can be obtained using imaging techniques. Figure 7 sketches the experimental
facility. The nearly two-dimensional feature of this facility has some disadvantages: for
instance, the low width-to-depth ratio leads to hydraulic difficulties since turbulence may
be controlled by the side walls rather than the bottom; and using spherical particles of
the same size can be problematic in terms of bed arrangement, thus producing artificial
conditions for particle entrainment. This is, however, the price paid for convenient access
to the detailed flows.

Experiments were performed in a tilted, narrow, glass-sided channel, 2 m in length
and 20 cm in height. The channel width B was adjusted to 6.5 mm, which was slightly
larger than the particle diameter d. In this way, particle motion was approximately two-
dimensional and stayed in the focal plane of the camera. The channel slope tan θ ranged
from 5% to 15%, but only experiments within the slope range 10% are reported here.

Coloured spherical glass beads with a nominal diameter of d = 6 mm and a density
ρp = 2500 kg/m3 (provided by Sigmund Lindner GmbH, Germany) were injected from a
reservoir into the channel using a wheel driven by a direct current motor and equipped
with 20 hollows on the circumference, as depicted in figure 7. For the experiments pre-
sented here, the injection rate ṅ0 was 8.2 beads per second, with an uncertainty of less
than 5%. The water supply at the channel entrance was controlled by an electromag-
netic flow meter provided by Krohne (France). The discharge per unit width qw was
5.39× 10−3m2/s.

The hydraulic conditions (velocity profile, bed friction, etc.) have been described in
earlier papers (Ancey et al. 2002; Böhm et al. 2004). Although the flume was narrow,
its hydraulic characteristics were like those observed in wide channels with shallow flows
(Frey & Reboud 2001).

The particles and the water stream were filmed using a Pulnix partial scan video camera
(progressive scan TM-6705AN), placed perpendicular to the glass panes at 115 cm away
from the channel, approximately 80 cm upstream from the channel outlet. The camera
was inclined at the same angle as the channel, behind which lights were positioned. An



A microstructural approach to bedload transport 21

0 10 20 30 40 50 60

0

5

10

15

20

t

n
Hb

ea
d�

sL

0 10 20 30 40 50 60

0

2

4

6

8

10

t HsL

n

Figure 8. Times series of the number of moving particles and particle transport rate.

area of ∆x = 22.5 cm in length and 8 cm in height was filmed and later reduced to
accelerate image processing.
The camera resolution was 640 × 192 pixels for a frame rate of 129.2 fps (exposure

time: 0.2 ms, 256 gray levels). Each sequence comprised 8000 images due to limited com-
puter memory; this corresponded to a duration of approximately one minute. Images
were analyzed using the WIMA software, provided by the Traitement du Signal et In-

strumentation laboratory in Saint-Étienne (France). Positions of the bead mass centers
were detected by means of an algorithm combining several image-processing operations;
particle trajectories were calculated using a tracking algorithm (Böhm et al. 2006).

11.2. Raw data

figure 8 shows the times series of N and ṅ used for the statistical treatment. The particle
velocity varied within a wide range: the average value ūs and the standard derivation
were 0.44 m/ s and 0.10 m/ s, respectively. The number of particles in the window (see
Fig. 9) ranged from 0 to 10, with varN = 2.1 and 〈N〉 = 4.2.

11.3. Analysis

Figure 6 shows the same information as that presented in figure 9 in the paper, but in
different ways. For the sake of comparison, figure 9(a) is the same as figure 9 in this paper.
Looking at the cumulative distribution function shows that the theoretical distribution
(3.45) does not perform well. The PP and QQ tests confirm this result.
The reason for this discrepancy is likely to be due to the non-Poissonian nature of

the distribution of the number of moving particles, as shown by figure figure 10. This
was probably the consequence of the supply system (consisting of a star wheel injecting
particles at constant rate) and the short length of the flume (2 m), which made the arrival
of particles more steady than wished.
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Figure 9. (a) Empirical probability density function (histogram) of the instantaneous particle
flux computed from 8000 frames; the thick solid line is the theoretical distribution (3.45) of
the paper. (b) Cumulative distribution function of the data and theoretical predictions. (c) QQ
plot: we have plotted the empirical quantile as a function of the theoretical quantile. Perfect
matching is achieved when the points collapse onto the first bissectrice. (d) PP plot: we have
plotted the theoretical probability as a function of the theoretical probability. Perfect matching
is achieved when the points collapse onto the first bissectrice. The flow conditions were the
following: depth-averaged velocity of water v̄ = 53 cm s−1, mean flow depth h = 1 cm, Froude
number Fr = 1.7, flow Reynolds number Re = 5300, Shields number Sh = 0.11.
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Figure 11. Overview of the experiments conducted at various solid discharges ṅ and slopes tan θ.
For each experiment, a detail of one filmed image is shown. See Tables 3 for the experimental
conditions.

12. Experiments 3: probability distribution of the particle transport

rate for a mobile bed

12.1. Overview

The experimental setup and data are presented in (Ancey et al. 2006) and (Ancey et al.

2008). The flume configuration is identical to that presented in § 9 except that now there
is a bed composed of the same beads as those injected at the flume inlet. The channel
base consisted of half-cylinders of equal size (radius r = 3 mm) and randomly arranged on
different levels. Disorder was essential, as it prevented slipping of entire layers of particles
on the upper bed surface, which would have induced artificial erosion conditions. The
effects of bed disorder were addressed by Böhm et al. (2004).
We ran 15 experiments with different inclinations and various flow rates. Bed load

equilibrium flows were achieved, as neither erosion nor deposition of particles occurred,
averaged over sufficiently long time intervals. Table 3 summarizes the features of the 15
experiments. Figure 11 provides a snapshot of all of the experiments presented in this
document.

12.2. Results

Figure 12 shows the empirical probability density function Pn(n) and the theoretical
distribution, which is the negative binomial law (3.17) in the paper. There is remarkably
good agreement between data and theory for all experiments (see also the electronic sup-
plement). Compared to our earlier findings (Ancey et al. 2008), this result shows that we
can get rid of the emigration/immigration process (which was our first attempt to model
the advection and dispersal of a particle current) without altering the performance of the
model. As we investigated steady uniform flow conditions, this similarity of behaviour
between the two formulations is not really a surprise. Further experimental work is under
way to test the model under time-dependent non-uniform flow conditions.
Figure 13 shows the empirical and theoretical probability density functions Pṅ(ṅ). In

that case, concordance between theory and experiments is less marked for the experiments
presented here; in the electronic supplement, we show that much better agreement is
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Run (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o)

tan θ 0.07 0.07 0.07 0.07 0.10 0.10 0.10 0.10 0.10 0.10 0.12 0.12 0.12 0.15 0.15
ṅ0 5.70 7.75 8.70 10.9 5.30 6.70 8.00 10.0 15.4 2.00 9.26 15.1 20.0 15.6 21.5
h 18.6 20.0 24.4 40.0 10.2 10.6 12.2 12.3 16.6 19.1 6.90 8.10 9.20 4.80 6.60
v̄ 53.7 57.7 56.7 65.3 40.8 41.7 44.3 45.1 49.3 54.1 43.0 47.6 48.6 48.0 44.6

Re× 103 10.0 11.5 13.8 26.2 4.20 4.40 5.40 5.50 8.20 10.3 3.00 3.80 4.50 2.30 2.90
Fr 1.26 1.30 1.16 1.04 1.29 1.29 1.28 1.30 1.22 1.25 1.65 1.69 1.62 2.21 1.76
Sh 0.14 0.15 0.19 0.30 0.10 0.11 0.12 0.12 0.17 0.19 0.09 0.10 0.12 0.07 0.10

ūrol 0.08 0.08 0.08 0.08 0.06 0.07 0.06 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.08
ūsal 0.35 0.36 0.33 0.30 0.28 0.29 0.29 0.28 0.31 0.31 0.23 0.27 0.30 0.18 0.22
ūs 0.17 0.18 0.17 0.17 0.14 0.16 0.13 0.15 0.15 0.14 0.10 0.11 0.12 0.08 0.10

E 33.0 52.0 61.5 73.0 48.5 47.9 68.1 64.7 103 150 106 155 174 182 187
D 33.3 51.7 61.8 72.4 47.9 48.5 67.9 65.0 103 151 106 155 173 182 187

〈N〉 7.10 9.80 12.2 14.9 9.50 9.90 13.8 13.7 22.8 34.2 21.9 32.4 38.5 43.3 47.9
varN 22.5 30.9 35.4 38.5 70.7 36.8 64.5 49.1 72.0 128 123 182 222 214 130

〈ṅ〉 5.45 7.76 9.20 10.9 5.72 6.85 7.74 9.41 15.5 20.5 9.52 15.5 19.8 15.4 20.5

σ 4.67 5.28 5.05 4.91 5.13 4.86 4.95 4.74 4.52 4.39 4.84 4.77 4.51 4.21 3.90
µ 3.21 3.61 3.31 3.01 4.44 3.56 3.89 3.42 3.09 3.23 3.94 3.93 3.73 3.36 2.47
λ′ 10.3 16.5 21.1 28.1 6.48 12.8 14.5 18 32.7 39.89 18.7 27.4 30.0 36.8 68.7

Table 3. Flow characteristics for experiments (e), (g), (i), and (j) carried out. Varying param-
eters: flume slope tan θ and inflow rate ṅ0 (beads s−1). Water flow characteristics v̄ (m s−1) and
h (mm) and time-averaged values of the Reynolds, Froude, and Shields numbers characterizing
bed load and water flow. For each experiments, we measured the particle velocity ūrol (m s−1)
in the rolling regime, their velocity ūsal (m s−1) in the saltating regime, the mean particle ve-
locity ūs (m s−1). We also measured the mean number of deposited/entrained particles and
then deduced the entrainment and deposition rates E (beads s−1) and D (beads s−1). We also
counted the mean number of moving particles〈N〉 as well as its variance varN . We deduced the
mean particle flux 〈ṅ〉 (beads s−1) in the control volume. From the deposition and entrainment
rates together with the number of moving particles, we inferred estimates of the entrainment
and deposition parameters µ (s−1), λ′ (s−1) and σ (s−1). See the electronic supplement for the
whole set of experiments.

obtained at steeper slopes. One possible reason for this discrepancy is the existence of
two populations of moving particles with two distinctive mean velocities. As shown by
table 3, there is a factor of about 5 between the velocities in the rolling and saltating
regimes. Comparing the different runs also shows that the larger the number of moving
particles, the better the agreement. This may be an indication that either theory performs
less in the limit N → 0 or the computation of the sediment transport rate is biased as
we did assume that the the probabilities Pn(n) and Pu(up) were independent such that
we could obtain Pṅ(ṅ) by taking the Fourier transform of the convolution product. This
is point that still requires further work.
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Figure 12. Probability density function for the number of moving particles in experiments (a)
to (o). The dots represent the empirical probability density while the dashed curves are the
theoretical distributions (3.17) of the paper.
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Figure 13. Probability density function for the particle flux in experiments (a) to (o). The
dots represent the empirical probability density while the dashed curves are the theoretical
distributions (3.45) with ζ = 4. This parameter was fixed arbitrarily, but provided that ζ > 3,
we found that altering ζ did not change the shape of Pṅ(ṅ) significantly for these runs
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