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A. Effect of turbulence on surface wave

In this section, we discuss the effect of turbulence on the wave in terms of the Stokes
drift velocity. We calculate the Stokes drift as

us = ⟨u⟩
L
. (A.1)

The definition of the Lagrangian average (·)
L
is given in § 3.1 of the paper. The linear

wave solution gives (Phillips 1977)

us = a2kσe2kz0 . (A.2)

Meanwhile, Phillips (2001) considered surface waves propagating over turbulent shear
flow in water and derived the generalized Stokes drift as ((4.11) in his paper)

us =
∂

∂z

∫ κ∗

0

Q31dτ − 1

2

∂2u

∂z2

∫ 0

κ∗

∫ ζ

0

Q33dτdζ. (A.3)

Here, (·) denotes the averaged value over the horizontal plane; Qij is the space–time
velocity correlation expressed as

Qij (y, z, t;Uτ, 0, 0, τ) =
1

Lx

∫ Lx

0

(ui (x, y, z, t)− ui) (uj (x+ Uτ, y, z, t+ τ)− uj) dx.(A.4)

Note that u = 0 in the present study. As a result, the second term on the right hand side
(RHS) of (A.3) is zero. The upper limit of the integral in the first term on the RHS of
(A.3) is determined by the constraint∫ κ∗σ

0

Q33

(w − w)
2
dτ = 1. (A.5)

Our DNS result and the results of (A.3) based on the wave velocity ⟨u⟩ and the total
velocity u are shown in figure 1. Note that the results from (A.3) are plotted up to
the height of wave trough, due to the horizontal average in (A.4). Because the wave
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Figure 1: Vertical profiles of us from the present DNS (– – –), (A.2) (——), and (A.3)
based on ⟨u⟩ (�) and based on u (•). Results are normalized by aS. Case II10 is shown
here.

properties of all the cases are similar (Part 1), we show the results of case II10 only. The
difference among the four cases is manifested in turbulence, which is discussed in the
result sections of the paper. As shown in figure 1, the difference among our result and
the results of (A.3) based on ⟨u⟩ and u is small, indicating that the effect of turbulence
on the Stokes drift is small in the present study. The small turbulence effect on the
wave is due to the small contribution by turbulence to the velocity correlation uw in
(A.4) (O(u′w′) ∼ O(0.1(u′rms,cf )2) ∼ O(0.001)) compared with the contribution by
wave (O(a2σ2) ∼ O(1)). The same conclusion can also be drawn from the results shown
in Part 1, where the DNS result of the wave field in the presence of turbulence agrees
with the theoretical analyses and measurements of waves in literature. The comparison
in figure 1 is a numerical support for the theoretical analysis of Phillips (2001). Note that
if the turbulence is much stronger, e.g., turbulence intensity is more than 10 times what
is considered here, the Stokes drift can be affected. The linear wave solution (A.2) is also
plotted in figure 1, which is different from our DNS result in the near-surface region, due
to the viscous effect of the free surface (Longuet-Higgins 1953).

B. Spectra of the normal production terms Pxx and Pzz

To further understand the energy exchange between the wave and turbulence in the
wavenumber space, we study the wavenumber spectra of Pxx and Pzz (see (2.5–2.7) in
the paper) defined as

ΨPii
(kx, z) =

1

2π

∫
Lx

Pii (x, y, z, t)Pii (x+ x′, y, z, t)e−ikxx
′
dx′ i = 1 or 3. (B.1)

The spectra are normalized as

ΨN
Pii

(kx, z) =
ΨPii

(kx, z)

(P rms
ii (z))

2 i = 1 or 3. (B.2)

Figure 2(a) and (b) respectively plot ΨN
Pxx

and ΨN
Pzz

at various depths. Note that the

results at kx > 5 are omitted in figure 2 due to their small magnitude. Both ΨN
Pxx

and

ΨN
Pzz

are the largest at kx = 1, indicating that the wave and turbulence exchange energy
mainly at the scale of the surface wave, consistent with the observation from figure 4 of
the paper. As kx increases, both ΨN

Pxx
and ΨN

Pzz
decrease drastically, due to the decrease
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Figure 2: Normalized spectra of the normal production term (a) ΨN
Pxx

and (b) ΨN
Pzz

at
kz = −0.1 (——), kz = −0.2 (– – –), kz = −0.3 (– · – · –), and kz = −0.4 (– · · – · · –).
Case II10 is shown here.
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Figure 3: Vertical variation of Φx for cases I15 (– · · – · · –), II10 (——), II15 (– · – · –),
and III10 (– – –), and case with flat surface (· · · · · ·). The results are normalized by

2(u′rms,cf
i )2/Lcf

∞.

of the wave strain rate at the high wavenumbers. Comparing ΨN
Pxx

with ΨN
Pzz

, we find

that in the near-surface region (kz > −0.2), ΨN
Pzz

(kx = 2) > ΨN
Pxx

(kx = 2). Due to

the large magnitude of u′2 (figure 3a of the paper), ΨN
Pxx

at kx = 2 is mainly due to

the wave strain rate at kx = 2. However, for ΨN
Pzz

, due to the small magnitude of w′2

and its relatively large variation in the near-surface region (figure 3c of the paper), ΨN
Pzz

at kx = 2 is contributed not only by the wave strain rate at kx = 2, but also by the
correlation between ⟨w′2⟩ and ∂⟨w⟩/∂z at kx = 1. As the depth increases, the decrease
of wave nonlinearity reduces the magnitude of ΨN

Pxx
and ΨN

Pzz
at kx > 2.

C. Plane average of the pressure–strain correlation term Φx

To further understand the effect of surface wave on the blockage effect of the free
surface, we plot the plane average of pressure–strain correlation term (see (2.5) in the
paper), Φx, in figure 3. Note that the result is shown up to the height of the trough
of surface wave to avoid the complexity of phase-weighted averaging. (For the region
between wave crest and trough, phase-weighted formulation for Reynolds normal stress
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budget should be used in a way similar to Hong &Walker 2000 and Brocchini & Peregrine
2001. The multiphase flow dynamics is however not the focus of the present study, and
is thus omitted here.) As a comparison, a case with the same turbulence but a flat
surface (i.e., no surface wave) is also plotted in figure 3. The Φx in the flat-surface case is
positive near the free surface, corresponding to the energy transfer from vertical velocity
component to horizontal ones, due to the blockage effect of the surface (Perot & Moin
1995; Guo & Shen 2010). Compared with Φx in the flat surface case, Φx in case III10 is
about the same, while Φx in cases I15, II10, and II15 is much larger in the near-surface
region, indicating that the blockage effect of the free surface is enhanced as the wave strain
rate increases. Away from the free surface, Φi is responsible for returning turbulence to
isotropy. As the depth increases, due to the combined effect of the reduction in the surface
blockage effect and the anisotropy of local turbulence (§ 2.1 of the paper), Φx decreases
drastically. For case I15, which has the strongest anisotropic turbulent motion (figure 3
of the paper), Φx even becomes negative at kz < −0.3.

D. Decomposition of turbulence pressure

For an incompressible flow, the turbulence pressure satisfies

∇2p′ = −2
∂ ⟨ui⟩
∂xj

∂u′
j

∂xi
− ∂u′

i

∂xj

∂u′
j

∂xi
+

⟨
∂u′

i

∂xj

∂u′
j

∂xi

⟩
, p′|z=η = p′fs,

∂p′

∂z

∣∣∣∣
z=−H

= 0.(D.1)

Here, H is the depth of the computational domain; p′fs is the turbulence pressure at
the wave surface. Note that p′fs should not be confused with the pressure given by the
dynamic boundary condition at the free surface. The latter is of the constant value of the
atmosphere pressure and is applied at the location of the instantaneous free surface. On
the other hand, p′fs is due to the interaction between the wave surface and turbulence. It
is applied at the mean wave surface (note that η here denotes the phase-averaged surface
elevation). Turbulence motion causes fluctuation in surface deformation, η′, which scales
with the Froude number squared, Fr2. The resultant p′fs scales with η′/Fr2 and is thus
non-zero. This result holds in the limit of Fr → 0, where the free surface becomes a
free-slip flat surface (see the discussion in Zhang, Shen & Yue 1999).

By decomposing the source term and the boundary condition in (D.1), we obtain

∇2p′St = 0, p′St
∣∣
z=η

= p′fs,
∂p′St

∂z

∣∣∣∣
z=−H

= 0, (D.2a)

∇2p′r = −2
∂ ⟨ui⟩
∂xj

∂u′
j

∂xi
, p′r|z=η = 0,

∂p′r

∂z

∣∣∣∣
z=−H

= 0, (D.2b)

∇2p′s = − ∂u′
i

∂xj

∂u′
j

∂xi
+

⟨
∂u′

i

∂xj

∂u′
j

∂xi

⟩
, p′s|z=η = 0,

∂p′s

∂z

∣∣∣∣
z=−H

= 0. (D.2c)

Here, the superscripts ‘St’, ‘r’, and ‘s’ denote the Stokes, rapid, and slow components,
respectively.
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Figure 4: Vertical profiles of – · – · –, ∂⟨u⟩/∂z
L
, · · · · · ·, Uxz, – · · – · · –, Uzz, and – –

–, dus/dz0 from the present DNS. Results are normalized by 2akS. Case II10 is shown
here.

E. Difference between dus/dz0 and ∂⟨u⟩/∂zL

Using (A.1), (3.1) of the paper, and the chain rule, we rewrite dus/dz0 as

dus

dz0
=

d

dz0

(
1

TL

∫ t0+TL

t0

uΠdt

)
=

1

TL

∫ t0+TL

t0

(
∂ ⟨u⟩
∂x

)Π
∂Πx

∂z0
dt︸ ︷︷ ︸

Uxz

+
1

TL

∫ t0+TL

t0

(
∂ ⟨u⟩
∂z

)Π

dt︸ ︷︷ ︸
∂ ⟨u⟩
∂z

L

+
1

TL

∫ t0+TL

t0

(
∂ ⟨u⟩
∂z

)Π
∂Πz

∂z0
dt︸ ︷︷ ︸

Uzz

. (E.1)

As (E.1) shows, dus/dz0 is related to ∂⟨u⟩/∂z
L

as well as Uxz and Uzz, where Uxz

represents the correlation between (∂⟨u⟩/∂x)Π and ∂Πx/∂z0, and Uzz represents the
correlation between (∂⟨u⟩/∂z)Π and ∂Πz/∂z0.

We plot in figure 4 the vertical profiles of ∂⟨u⟩/∂z
L
(which has been studied in Part 1

and is shown here for comparison), Uxz, Uzz, and dus/dz0. Due to the similar wave
properties among the four simulation cases (Part 1), only the result of case II10 is shown

here. In the deep region, ∂⟨u⟩/∂z
L
, Uxz, and Uzz make comparable contributions to

dus/dz0. As the free surface is approached, although both Uxz and Uzz increase to their
maxima near the free surface, their relative contributions to dus/dz0 are relatively small

compared with ∂⟨u⟩/∂z
L
due to the large value of the latter there. Nevertheless, figure 4

shows that Uxz and Uzz make noticeable difference between dus/dz0 and ∂⟨u⟩/∂z
L
.

F. Vertical profiles of PLL
13 , P ll

13, and PLL
31

Figure 5 shows the vertical profiles of PLL
13 , P ll

13, and PLL
31 (see § 3 of the paper) of

case II10. The P
LL
13 and PLL

31 are close to zero at the free surface due to the small value of

⟨u′w′⟩
L
, of which the vertical profiles are shown in figure 6. As the depth increases, PLL

13

increases to its maximum at around kz0 = −0.1 and then decreases gradually to about
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Figure 5: Vertical profiles of dominant components in shear production: ——, PLL
13 , – –

–, P ll
13, and – · – · –, PLL

31 . The inset shows a zoom view of P ll
13 in the near-surface region.

The results are normalized by 2(u′rms,cf
i )2S. Case II10 is shown here.
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Figure 6: Vertical profiles of u′w′L for cases I15 (– · – · –), II10 (——), II15 (– · · – · · –),
and III10 (– – –). The result is normalized by (u′rms,cf )2.

zero in the deep region. The increase is due to the increase of both ⟨u′w′⟩
L
(figure 6) and

∂⟨u⟩/∂z
L
(figure 4; also discussed in Part 1) near the free surface. The decrease of PLL

13

in the deep region is mainly due to the decrease of ∂⟨u⟩/∂z
L
. As the depth increases,

compared with PLL
13 , PLL

31 reaches its maximum at a deeper location around kz0 = −0.3.

This difference is because ∂⟨w⟩/∂x
L

decreases uniformly from the free surface to the

deep region, whereas ∂⟨u⟩/∂z
L
first increases from a small value at the free surface to

its maximum and then decreases towards the deep region. Thus, the increase of PLL
31 is

contributed only by the increase of ⟨u′w′⟩
L
near the free surface. The decrease of PLL

31 is
due to the decrease of ∂⟨w⟩/∂x in the deep region.
Next, we discuss P ll

13. As shown in the inset of figure 5, as the depth increases, P ll
13

increases from a small value at the free surface, reaches its maximum near the free surface,
decreases drastically to a small negative value, and then approaches zero in the deep
region. This variation is consistent with the distribution of θ13 discussed in Appendix B
of the paper. The small value of P ll

13 at the free surface and in the deep region is caused
by the θ13 values near 3π/2 and π/2 in these two regions, respectively (see figure 6 and
(B3) of the paper). The P ll

13 reaches its maximum at a short distance below the free
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surface where θ13 ≈ π. Therefore, P ll
13 is associated with the viscous effect of the free

surface and contributes to the net energy transfer from the wave to turbulence mainly
in the near-surface region.
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