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Analytical derivation of the statistical relative error
Details of the analytical deduction of the statistical relative errors shown in (3.4) and

(3.13) are provided in this appendix.
Interpolative filters

Expansion of the numerator of (3.1) leads to:

〈(
ϕ(x) − φ̃(x)

)2
〉1/2

ψ,k,ε

=
[〈
ϕ(x)2

〉
ψ
− 2

〈
ϕ(x)φ̃(x)

〉
ψ,k,ε

+
〈
φ̃(x)2

〉
ψ,k,ε

]1/2

( 1)

The statistical average of the first term on the right hand side of ( 1) does not sample the
contribution of filter points location or the measurement error or perturbing stochastic
data, since ϕ(x) is the exact data field to be measured. Thus only the contribution of all
possible data phases of the signal is taken into account. As the value of the phase ψ is
considered homogeneously distributed over all its possible realisations, ( 1) is independent
of x and ϕ can be arbitrarily referred to the origin of coordinates. Therefore:

〈
ϕ(x)2

〉
ψ

=
〈
ϕ(0)2

〉
ψ

=
∞∑

L(1),L(2)=0

ϕ̂L(1) ϕ̂L(2)

D∏
i,j=1

〈
sin

(
ψ
i,l

(1)
i

)
sin

(
ψ
j,l

(2)
j

)〉
ψ

( 2)

Here the compact notations
∑∞

L(1),L(2)=0 =
∑∞

L(1)=0

∑∞
L(2)=0 =

∑∞
l
(1)
1 =0

···∑∞
l
(1)
D =0

∑∞
l
(2)
1 =0

··
·∑∞

l
(2)
D =0

and
∏D
i,j=1 =

∏D
j=1

∏D
j=1 have been adopted. In a general signal, the phases

between different dimensions as well as between different Fourier index components are
uncorrelated, so:

〈
sin

(
ψ
i,l

(1)
i

)
sin

(
ψ
j,l

(1)
j

)〉
ψ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2π

∫ 2π

0

sin2(ψ)dψ =
1
2

if i = j and l
(1)
i = l

(2)
j[

1
2π

∫ 2π

0

sin(ψ)dψ
]2

= 0 otherwise.

( 3)
which greatly simplifies ( 2) to give:

〈ϕ(x)2〉ψ =
1

2D

∞∑
L=0

ϕ̂2
L ( 4)
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A similar procedure can be followed to evaluate the second term on the right hand
side of ( 1). However, the filtered signal φ̃ is now divided into the deterministic and the
noise, or stochastic, components:

〈ϕ(x)φ̃(x)〉ψ,k,ε = 〈ϕ(x)ϕ̃(x)〉ψ,k + 〈ϕ(x)ε̃(x)〉ψ,k,ε ( 5)
Here, the second term on the right hand side of ( 5) is null since, by definition, ε̃

is uncorrelated with ϕ. The statistical average of the deterministic component can be
expanded as a series representing the Fourier expansion over all the data points affected
by the filter. The average is performed first for the phases:

〈ϕ(x)ϕ̃(x)〉ψ = 〈ϕ(0)ϕ̃(0)〉ψ

=

∑Np
k=1

∑∞
L(1),L(2) ϕ̂L(1) ϕ̂L(2)gI(xk)

∏D
i,j=1

〈
sin

(
ψ
i,l

(1)
i

)
sin

(
xk,jF

j,l
(2)
j

+ψ
j,l

(2)
j

)〉
ψ∑Np

k=1 gI (xk)
( 6)

Upon applying ( 3) and recognizing that
∫ 2π

0
sin(ψ) cos(ψ)dψ = 0

〈ϕ(x)ϕ̃(x)〉ψ =
1

2D

∑Np
k=1

∑∞
L=0 ϕ̂

2
L=0gI(xk)

∏D
i,j=1 cos

(
xk,jFj,lj

)
∑Np

k=1 gI(xk)
( 7)

To make affordable the sampling of all the possible point locations xk in the statistical
average, the following approximation is made:

〈ϕ(x)ϕ̃(x)〉ψ,k ≈
1

2D

∑Np
k=1

∑∞
L=0 ϕ̂

2
L〈gI(xk)

∏D
i=1 cos (xk,iFi,li)〉k

〈∑Np
k=1 gI(xk)〉k

( 8)

Thus, using (2.11) for a window of rectangular section,

〈ϕ(x)ϕ̃(x)〉ψ,k ≈
1

VF 2D

∑Np
k=1

∑∞
L=0 ϕ̂

2
L

∏D
j=1

∫ LF,j
−LF,j h(xk,j) cos(xjFj,lj )dxk,j

1
VF

∑Np
k=1

∏D
j=1

∫ LF,j
−LF,j h(xk,j)dxk,j

( 9)

Also, from (2.7), the following result is obtained:

〈
1
VF

Np∑
k=1

D∏
j=1

∫ LF,j

−LF,j
h(xk,j)dxk,j

〉
k

=
Np
VF

( 10)

The approximation of ( 8) is valid provided Np is sufficiently high, since a large number
of points within the filter window makes the denominator of the right hand side of ( 7)
insensitive to the particular location of each point. Given ( 10), the approximation shown
in ( 8) is equivalent of simplifying the filter denominator with (2.8),

〈ϕ(x)ϕ̃(x)〉ψ,k ≈
1

VF 2D

∑Np
k=1

∑∞
L=0 ϕ̂

2
L=0

∏D
j=1

∫ LF,j
−LF,j h(xk,j) cos(xjFj,lj )dxk,j

Np
VF

( 11)

Defining the pseudo-spectral transformation along the i direction as

Slj =
∫ Lf

−Lf
h(s) cos(sFj,lj )ds ( 12)
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so that δL =
∏D
j=1 Slj , the structure of ( 8) further simplifies

〈ϕ(x)ϕ̃(x)〉ψ,k ≈ 1
2D

∞∑
L=0

ϕ̂2
LδL ( 13)

The third term on the right-hand side of ( 1) is treated similarly, but it involves the
product of two filtered sets of data. This fact has implications for the way in wich the
denominator of the filter in (2.6) can be handled. As above, the contribution of the
deterministic and stochastic components of the filtered signal can be separated:

〈φ̃(x)φ̃(x)〉ψ,k,ε = 〈ϕ̃(x)2〉ψ,k + 〈ε̃(x)2〉k,ε, ( 14)
with 〈ϕ̃(x)ε̃(x)〉ψ,k,ε = 0 because ϕ and ε (and hence their filtered signals) are uncor-

related, by definition. Performing first the statistical average over phases of the deter-
ministic filtered signal component:

〈ϕ̃(x)2〉ψ = 〈ϕ̃(0)2〉ψ

=

Np∑
k(1),k(2)=1

∞∑
L(1),L(2)=0

ϕ̂
L(1) ϕ̂L(2)gI (xk(1) )gI (xk(2) )P (x

k(1)
,x
k(2)

,L(1),L(2))

Np∑
k(1),k(2)=1

gI (xk(1) )gI (xk(2) )

( 15)

where,

P (xk(1) ,xk(2) ,L(1),L(2)) =
D∏

i,j=1

〈
sin

(
xk(1),iFi,l(1)i

+ ψ
i,l

(1)
i

)
sin

(
xk(2),jFj,l(2)j

+ ψ
j,l

(2)
j

)〉
ψ

( 16)
In a similar fashion to the way in which ( 3) was treated:

〈
sin

(
xk(1) ,iFi,l(1)i

+ ψ
i,l

(1)
i

)
sin

(
xk(2) ,jFj,l(2)j

+ ψ
j,l

(2)
j

)〉
ψ

=

{
1
2Q(xk(1) ,i, xk(2) ,j, Fi,l(1)i

) if i = j and l(1)i = l
(2)
j

0 otherwise.
( 17)

where,

Q(xk(1) ,i, xk(2) ,i, F
(1)
i,li

)

= sin(xk(1),i, F
(1)
i,li

) sin(xk(2) ,i, F
(1)
i,li

) + cos(xk(1) ,i, F
(1)
i,li

) cos(xk(2) ,i, F
(1)
i,li

) ( 18)

Following ( 8), the statistical average of ( 15) over the locations of all the sampling
points is approximated by:

〈
ϕ̃(x)2

〉
ψ,k

≈
1

2D

Np∑
k=1

∞∑
L=0

ϕ̂2
L

〈
D∏
i=1

h(x
k(1),i

)h(x
k(2),i

)Q(x
k(1),i

,x
k(2),i

,Fi,li )

〉
k

〈
[∑Np

k=1 gI (xk)
]2〉k

( 19)

In the summation in ( 19), there are N2
p −Np combinations of the pair

(
k(1), k(2)

)
in
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which xk(1) and xk(2) are uncorrelated, and Np combinations corresponding to the case
xk(1) = xk(2) . Besides, due to the symmetry of h with respect to the centre of the filter,
sine functions in ( 19) lead to zero contributions in the statistical average if xk(1) and
xk(2) are uncorrelated. Therefore:

〈∏D
i=1 h(xk(1),i)h(xk(2) ,i)Q(xk(1) ,i, xk(2) ,i, Fi,li)

〉
k

=
(N2

p−Np)
V 2
F

[∏D
i=1

∫ LF,i
−LF,i h(xk,i)cos(xk,iFi,li)dxk,i

]2

+Np
VF

∏D
i=1

∫ LF,i
−LF,i h

2(xk,i)dxk,i ( 20)

and

〈⎡
⎣ Np∑
k=1

gI(xk)

⎤
⎦

2〉
k

=
(N2

p −Np)
V 2
F

[
D∏
i=1

∫ LF,i

−LF,i
h(xk,i)dxk,i

]2

+
Np
VF

D∏
i=1

∫ LF,i

−LF,i
h2(xk,i)dxk,i

( 21)
Indroducing ( 20) and ( 21) into ( 19) the following is obtained:

〈ϕ̃(x)2〉ψ ≈ 1
2D

∞∑
L=0

ϕ̂2
L

[
(N2

p −Np)δ2L +NpGI

N2
p −Np +NpGI

]
( 22)

where GI = VF
∏D
i=1

∫ LF,i
−LF,i h

2(s)ds
The noise or non-deterministic component of the filtered signal has a contribution in

( 14) wich can be expressed as:

〈
ε̃(x)2

〉
k,ε

=

〈∑Np

k(1),k(2)=0
gI (xk(1) )gI (xk(2) )εk(1) εk(2)∑Np

k(1),k(2)=0
gI (xk(1) )gI (xk(2) )

〉
k,ε

≈
〈∑Np

k=0 gI (xk)
2
〉
k
σ2
ε〈[∑Np

k=1 gI (xk)
]2

〉
k

= GI
(Np−1)+GI

σ2
ε ( 23)

After combining all the simplified exppresions, ( 4), ( 13) and ( 22) in (3.1), the next
closed form solution surfaces up for the estimation of the relative error of interpolation:

〈(
ϕ(x) − φ̃(x)

)2
〉1/2

ψ,k,ε

〈ϕ(x)2〉1/2ψ,k

≈
[∑∞

L=0 ϕ̂
2
L

(Np−1)(1−δL)2+2GI(1−δL)
Np−1+GI

+ 2DGI
Np−1+GI

σ2
ε

]1/2

[
∑∞

L=0 ϕ̂
2
L]1/2

( 24)

Differentiation filters
The statistical error of differentiation filters, (3.13), can be deduced using a similar
methodology to that utilised for interpolative filters. As in ( 1), expansion of the nu-
merator of (3.12) leads to three terms

〈(
ϕd(x) − ˜̃

φ(x)
)2

〉1/2

ψ,k,ε

=
[
〈ϕd(x)2〉ψ,ε − 2〈ϕd(x)˜̃φ(x)〉ψ,k,ε + 〈˜̃φ(x)2〉ψ,k,ε

]1/2

( 25)
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In ( 25), the statistical average of the differentiated data over all phase values for each
component of the Fourier transform was calculated:

〈ϕd(x)2〉ψ = 〈ϕd(0)2〉ψ

=
∞∑

L(1),L(2)=0

ϕ̂L(1) ϕ̂L(2)F
1,l

(1)
1
F

1,l
(2)
1

〈
cos

(
ψ

1,l
(1)
1

)
cos

(
ψ

1,l
(2)
1

) D∏
i,j=2

sin
(
ψ
i,l

(1)
i

)
sin

(
ψ
j,l

(2)
j

)〉
ψ

= 1
2D

∞∑
L=0

ϕ̂2
LF

2
1,l1

( 26)

Then, similarly to ( 5), the second term of ther right hand side of ( 25) can be descom-
posed into the contributions of the deterministic and stochastic signals filtered by the
differentiation filter, ˜̃ϕ and ˜̃ε respectively:

〈ϕd(x)˜̃φ(x)〉ψ,k,ε = 〈ϕd(x)˜̃ϕ(x)〉ψ,k + 〈ϕd(x)˜̃ε(x)〉ψ,k,ε ( 27)

The differentition filter, (2.15), can be rearranged in a more convenient way for aver-
aging operations:

∂φ̃(x)
∂x1

≈
1
Np

∑Np
k,s=1 (gD(xk − x) − gD(xs − x))φk∑Np

k=1 gI(xk − x)
( 28)

Using the above expression, and performing a procedure analogous to that employed in
interpolating filters, it can be seen that the deterministic contribution in ( 27) transforms
to:

〈ϕd(x)˜̃ϕ(x)〉ψ,k

≈
1

2DNp

Np∑
k,s=1

∞∑
L=0

ϕ̂2
LF1,l1

〈
(gD(xk)−gD(xs)) sin(xk,1F1,l1)

D∏
i=2

cos(xk,iFi,li)
〉
k,s〈

Np∑
k=1

gI (xk)

〉
k

( 29)

Therefore:

〈ϕd(x)˜̃ϕ(x)〉ψ,k ≈ 1
2D

∞∑
L=0

ϕ̂2
LF1,l1γL

(
1 − 1

Np

)
( 30)

where γL = Rl1
∏D
j=2 Slj with Rli =

∫ LF
−LF h

′(s) sin(sF1,l1)ds. Provided gI is null at
the boundaries, it can be demostrated that γl = Fl1δL.

The third term on the right hand side of ( 25) leads to the deterministic and stochastic
contributions as in interpolating filters:

〈
˜̃φ(x)˜̃φ(x)

〉
ψ,k,ε

=
〈 ˜̃ϕ(x)2)

〉
ψ,k

+
〈˜̃ε(x)2)

〉
k,ε

( 31)

However, the presence of
∑Np

s=1 φs in the filter (2.15), makes the formulation of
〈 ˜̃ϕ(x)2)

〉
ψ,k

more intricate than that of
〈
ϕ̃(x)2)

〉
ψ,k

:

〈˜̃ϕ(x)2)
〉
ψ,k

=
〈 ˜̃ϕ(0)2)

〉
ψ,k
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≈
Np∑

k(1),k(2),s(1),s(2)=1

∞∑
L=0

ϕ̂2
L

〈
A(xk(1) ,xk(2) ,xs(1) ,xs(2))

D∏
i=1

Q(x
k(1),i

,x
k(2),i

,Fi,li )

〉
k,s

2DN2
p

Np∑
k(1),k(2)=1

〈gI (xk(1) )gI (xk(2) )〉k
( 32)

where:

A (xk(1) ,xk(2) ,xs(1) ,xs(2) ) = (gD(xk(1) ) − gD(xs(1) )) (gD(xk(2) ) − gD(xs(2)))

When performing the statistical average aver all possible locations of data points
within the filter window, as was done in ( 19), several combinations of the quadruplet(
k(1), k(2), s(1), s(2)

)
appear leading to non-null terms:

〈 ˜̃ϕ(x)2)
〉
ψ,k

≈
1

2D
∑∞

L=0 ϕ̂
2
LF

2
1,l1

(Np−1)

[
[(Np−1)2+1]δ2L−2(Np−1)ξLαL+[(Np−2)α2

L+Np] GD
F2
1,l1

]

N3
p−N2

p+N2
pGI

( 33)

Here, αL is given by (3.22),

ξL =
VF
F 2

1,l1

∫ LF,i

−LF,i
h′2(s) cos(sF1,l1)ds

D∏
i=2

∫ LF,i

−LF,i
h2(s) cos(sF1,l1)ds

by (3.23) and GD = VF
∫ LF,i
−LF,i h

′2ds
(∫ LF,i

−LF,i h
2(s)ds

)D−1

by (3.24). Since ˜̃ε is uncor-

related with either ϕ or ϕd, the term 〈ϕd(x)˜̃ε(x)〉ψ,k,ε in equation ( 27) vanishes and the
contribution of the noise or stochastic component of the signal in the statistical error of
the differentiation filtering in restricted to 〈˜̃ε(x2)〉k,ε as in interpolative filters:

〈ε̃(x2)〉k,ε ≈
1
N2
p

〈∑Np
k,s=0 (gD(xk) − gD(xs))

2
〉
k
σ2
ε〈[∑Np

k=1 gI(xk)
]2
〉
k

=
(Np − 1)GDσ2

ε

N2
p −Np +NpGI

( 34)

Finally, incorporating ( 26),( 30),( 33) and ( 34) into ( 25) and (3.12), a closed form
equation for the staticial relative error of differentiation is obtained:

ED ≈

[∑∞
L=0 ϕ̂

2
LF

2
1,l1

ê2D,L +
2D(1−N−1

p )GD
Np−1+GI

σ2
ε

]1/2

[∑∞
L=0 ϕ̂

2
LF

2
1,l1

]1/2
( 35)

Where êD,L includes all terms of the numerator of ( 35) except those multiplying σ2
ε :

êD,L ≈
[
(1 − δ2L) +

[
(Np−1)3+Np−1
N3
p−N2

p+N2
pGI

− 1
]
δ2L − 2(Np−1)

Np
δL − 2(Np−1)2

N3
p−N2

p+N2
pGI

ξLαL

+ (Np−2)(Np−1)
N3
p−N2

p+N2
pGI

GDα
2
L

F 2
1,l1

+ Np−1
N2
p−Np+NpGI

GD
F 2

1,l1

]1/2

( 36)

It should be noted that (1 − δL)2 is usually the predominant element in the above
equation when the contribution of êD,L to the relative error is important (i.e. for small
values of F1,L1). Thus, in order to shorten ( 36), the following simplification, based on
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the approximation Np + 1 − G1 ≈ Np, can be made without incurring any appreciable
perturbation of the results given by ( 35)

êD,L ≈
[
(1 − δ2L) +

[−3N2
p+4Np−2

N3
p

− 1
]
δ2L − 2(Np−1)

Np
δL − 2(Np−1)2

N3
p

ξLαL

+ (Np−2)(Np−1)
N3
p

GDα
2
L

F 2
1,l1

+ Np−1
N2
p

GD
F 2

1,l1

]1/2

( 37)


