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Appendix D. Numerical methods

D.1. Numerical solution of rim equation

Here, we describe our numerical method for solving the boundary value problem for
the rim profile, defined by equations (3.9), (3.10), and (4.13). For a fixed value of the
parameter q, equations (3.9) and (4.13) were recast as
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Boundary condition (3.10) was enforced by rescaling x̃ after the converged profile h̃(x̃)
is obtained.

Equations (D 1) and (D 2) were solved by iteration, where h̃(n+1)(x̃) is the profile
corresponding to n + 1 iterations, and h̃(0)(x̃) = x̃2. The transformation (D1) and (D 2)
is a contracting map; we observed that h̃(n)(x̃) converges exponentially to a fixed point
h̃(x̃). The convergence exponent vanishes for q → q∗, and we were unable to obtain a
solution for q > q∗, indicating that q = q∗ is a turning point. Solutions corresponding to
q > q∗ collapse at a finite negative value of x̃ and are thus unphysical.

The critical parameter value (4.16) was obtained by by advancing the parameter q using
interval halving. The coefficient (4.18) of the square-root far-field film profile (4.17) was
extracted from the profile corresponding to q = q∗.

The iterative solution was obtained on the finite computational domain, −X1 < x <
X2, using approximations for the tails of the integral in equation (D 1), x > X2 and x <
−X1, based on the asymptotic far-field forms (3.10) and (4.17). The cut-off parameters
X1 and X2 were increased starting with an iterative solution for modest values of these
parameters, until convergent results were obtained.

D.2. Numerical solution of dome equation

Integral equation (5.24) was solved using a Galerkin formulation, in which the L2 norm
of the residual was minimized as a functional of D2 [ω̄d] (r). By symmetry, the film profile
has an expansion in even powers of r about r = 0 as does the velocity profile ω̄d(r), but
D2 [ω̄d] (r) has an odd-power expansion about r = 0. At the edge of the dome region,
D2 [ω̄d] (r) has the singular behavior (5.14). Based on the form of D2 [ω̄d] (r) for r → 0
and r → 1−, the function D2 [ω̄d] (r) was represented in terms of basis functions given
by
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where ak (k = 0, 1, 2 · · ·) are the expansion coefficients. Our numerical solution of equa-
tion (5.24) was insensitive to the form of the basis functions; the same results were
obtained with other basis functions that have the proper symmetry at r = 0 and proper
singular behavior at r = 1.

After solving equation (5.24) for D2 [ω̄d] (r), as described above, the velocity profile
was obtained by integrating equation (5.9) from r = 0 using initial conditions compatible
with equation (5.4):
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The volume profile Ω̄(r) and the film thickness h̄d(r) were derived from ω̄d(r) using
equations (5.27)–(5.28).

Inserting the basis-function expansion (D3) into equation (5.14) yields the amplitude
of the square-root film profile at the rim (5.11),
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where a0 is the first expansion coefficient in (D 3) and Ω̄1 is the dome volume. According
to our numerical solution, a0

.
= 1.500 and Ω̄1 is given by (5.31), thus we obtain the

numerical value of ᾱ by equation (5.32).

D.3. Discretization for thin film simulations

In our thin film simulations, the interface was discretized on the finite interval 0 ≥ r ≥
R∞ (where R∞ is a cutoff parameter). To resolve the lateral length scales in the rim
as well as in the dome and outer regions the spatial coordinate r was discretized using
non-uniform adaptive mesh, defined by the time-dependent mesh-point density function
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Here, N0 is the number of mesh points, xr is the fraction of mesh points used to discretize
the rim region, g(x̃) is a normalized distribution function that resolves the curvature,
curvature gradient, and tangential stress in the rim region, and x̃ is the rim variable
(3.6). Accurate resolution of the far-field rim stress was found to be important, thus a
distribution function with algebraic decay compatible with equation (4.19) was used in

our simulations. Given the normalization
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In our simulations, approximately two-thirds of the nodes were used to resolve the rim
region, i.e., xr ≈ 2/3. Our long-time numerical results were insensitive to the truncation
in r for R∞ > 3; however, we used R∞ = 20 in order to resolve the short-time behavior
also. For xr and R∞ fixed, we observed O(N−2

0 ) numerical convergence. The results
depicted in figures 6–9 were obtained using N0 = 300 and are converged to the resolution
of the figures.


